Mercurial > repos > kaymccoy > consolidate_fitnesses
view consol_fit.py @ 8:b108f7fe9493 draft default tip
Uploaded
author | kaymccoy |
---|---|
date | Fri, 12 Aug 2016 16:44:38 -0400 |
parents | 4b2fc35b32b0 |
children |
line wrap: on
line source
# Consol_fit! It's a script & it'll consolidate your fitness values if you got them from a looping trimming pipeline instead of the standard split-by-transposon pipeline. That's all. # K. McCoy import math import csv ##### ARGUMENTS ##### def print_usage(): print "\n" + "You are missing one or more required flags. A complete list of flags accepted by calc_fitness is as follows:" + "\n\n" print "\033[1m" + "Required" + "\033[0m" + "\n" print "-i" + "\t\t" + "The calc_fit file to be consolidated" + "\n" print "-out" + "\t\t" + "Name of a file to enter the .csv output." + "\n" print "-out2" + "\t\t" + "Name of a file to put the percent blank score in (used in aggregate)." + "\n" print "-calctxt" + "\t\t" + "The txt file output from calc_fit" + "\n" print "-normalize" + "\t" + "A file that contains a list of genes that should have a fitness of 1" + "\n" print "\n" print "\033[1m" + "Optional" + "\033[0m" + "\n" print "-cutoff" + "\t\t" + "Discard any positions where the average of counted transcripts at time 0 and time 1 is below this number (default 0)" + "\n" print "-cutoff2" + "\t\t" + "Discard any positions within the normalization genes where the average of counted transcripts at time 0 and time 1 is below this number (default 0)" + "\n" print "-wig" + "\t\t" + "Create a wiggle file for viewing in a genome browser. Provide a filename." + "\n" print "-maxweight" + "\t" + "The maximum weight a transposon gene can have in normalization calculations" + "\n" print "-multiply" + "\t" + "Multiply all fitness scores by a certain value (e.g., the fitness of a knockout). You should normalize the data." + "\n" print "\n" import argparse parser = argparse.ArgumentParser() parser.add_argument("-calctxt", action="store", dest="calctxt") parser.add_argument("-normalize", action="store", dest="normalize") parser.add_argument("-i", action="store", dest="input") parser.add_argument("-out", action="store", dest="outfile") parser.add_argument("-out2", action="store", dest="outfile2") parser.add_argument("-cutoff", action="store", dest="cutoff") parser.add_argument("-cutoff2", action="store", dest="cutoff2") parser.add_argument("-wig", action="store", dest="wig") parser.add_argument("-maxweight", action="store", dest="max_weight") parser.add_argument("-multiply", action="store", dest="multiply") arguments = parser.parse_args() if (not arguments.input or not arguments.outfile or not arguments.calctxt): print_usage() quit() if (not arguments.max_weight): arguments.max_weight = 75 if (not arguments.cutoff): arguments.cutoff = 0 # Cutoff2 only has an effect if it's larger than cutoff, since the normalization step references a list of insertions already affected by cutoff. if (not arguments.cutoff2): arguments.cutoff2 = 10 #Gets total & refname from calc_fit outfile2 with open(arguments.calctxt) as file: calctxt = file.readlines() total = float(calctxt[1].split()[1]) refname = calctxt[2].split()[1] ##### CONSOLIDATING THE CALC_FIT FILE ##### with open(arguments.input) as file: input = file.readlines() results = [["position", "strand", "count_1", "count_2", "ratio", "mt_freq_t1", "mt_freq_t2", "pop_freq_t1", "pop_freq_t2", "gene", "D", "W", "nW"]] i = 1 d = float(input[i].split(",")[10]) while i < len(input): position = float(input[i].split(",")[0]) strands = input[i].split(",")[1] c1 = float(input[i].split(",")[2]) c2 = float(input[i].split(",")[3]) gene = input[i].split(",")[9] while i + 1 < len(input) and float(input[i+1].split(",")[0]) - position <= 4: if i + 1 < len(input): i += 1 c1 += float(input[i].split(",")[2]) c2 += float(input[i].split(",")[3]) strands = input[i].split(",")[1] if strands[0] == 'b': new_strands = 'b/' elif strands[0] == '+': if input[i].split(",")[1][0] == 'b': new_strands = 'b/' elif input[i].split(",")[1][0] == '+': new_strands = '+/' elif input[i].split(",")[1][0] == '-': new_strands = 'b/' elif strands[0] == '-': if input[i].split(",")[1][0] == 'b': new_strands = 'b/' elif input[i].split(",")[1][0] == '+': new_strands = 'b/' elif input[i].split(",")[1][0] == '-': new_strands = '-/' if len(strands) == 3: if len(input[i].split(",")[1]) < 3: new_strands += strands[2] elif strands[0] == 'b': new_strands += 'b' elif strands[0] == '+': if input[i].split(",")[1][2] == 'b': new_strands += 'b' elif input[i].split(",")[1][2] == '+': new_strands += '+' elif input[i].split(",")[1][2] == '-': new_strands += 'b' elif strands[0] == '-': if input[i].split(",")[1][2] == 'b': new_strands += 'b' elif input[i].split(",")[1][2] == '+': new_strands += 'b' elif input[i].split(",")[1][2] == '-': new_strands += '-' else: if len(input[i].split(",")[1]) == 3: new_strands += input[i].split(",")[1][2] strands = new_strands i +=1 if c2 != 0: ratio = c2/c1 else: ratio = 0 mt_freq_t1 = c1/total mt_freq_t2 = c2/total pop_freq_t1 = 1 - mt_freq_t1 pop_freq_t2 = 1 - mt_freq_t2 w = 0 if mt_freq_t2 != 0: top_w = math.log(mt_freq_t2*(d/mt_freq_t1)) bot_w = math.log(pop_freq_t2*(d/pop_freq_t1)) w = top_w/bot_w row = [position, strands, c1, c2, ratio, mt_freq_t1, mt_freq_t2, pop_freq_t1, pop_freq_t2, gene, d, w, w] results.append(row) with open(arguments.outfile, "wb") as csvfile: writer = csv.writer(csvfile) writer.writerows(results) ##### REDOING NORMALIZATION ##### # The header below is just in a typical WIG file format; if you'd like to look into this more UCSC has notes on formatting WIG files on their site. if (arguments.wig): wigstring = "track type=wiggle_0 name=" + arguments.wig + "\n" + "variableStep chrom=" + refname + "\n" if (arguments.normalize): with open(arguments.normalize) as file: transposon_genes = file.read().splitlines() print "Normalize genes loaded" + "\n" blank_ws = 0 sum = 0 count = 0 weights = [] scores = [] for list in results: if list[9] != '' and list[9] in transposon_genes and list[11]: c1 = list[2] c2 = list[3] score = list[11] avg = (c1 + c2)/2 # Skips over those insertion locations with too few insertions - their fitness values are less accurate because they're based on such small insertion numbers. if float(c1) >= float(arguments.cutoff2): # Sets a max weight, to prevent insertion location scores with huge weights from unbalancing the normalization. if (avg >= float(arguments.max_weight)): avg = float(arguments.max_weight) # Tallies how many w values are 0 within the blank_ws value; you might get many transposon genes with a w value of 0 if a bottleneck occurs, which is especially common with in vivo experiments. # For example, when studying a nasal infection in a mouse model, what bacteria "sticks" and is able to survive and what bacteria is swallowed and killed or otherwise flushed out tends to be a matter of chance not fitness; all mutants with an insertion in a specific transposon gene could be flushed out by chance! if score == 0: blank_ws += 1 sum += score count += 1 weights.append(avg) scores.append(score) print str(list[9]) + " " + str(score) + " " + str(c1) # Counts and removes all "blank" fitness values of normalization genes - those that = 0 - because they most likely don't really have a fitness value of 0, and you just happened to not get any reads from that location at t2. blank_count = 0 original_count = len(scores) i = 0 while i < original_count: w_value = scores[i] if w_value == 0: blank_count += 1 weights.pop[i] scores.pop[i] i-=1 i += 1 # If no normalization genes can pass the cutoff, normalization cannot occur, so this ends the script advises the user to try again and lower cutoff and/or cutoff2. if len(scores) == 0: print 'ERROR: The normalization genes do not have enough reads to pass cutoff and/or cutoff2; please lower one or both of those arguments.' + "\n" quit() pc_blank_normals = float(blank_count) / float(original_count) print "# blank out of " + str(original_count) + ": " + str(pc_blank_normals) + "\n" with open(arguments.outfile2, "w") as f: f.write("blanks: " + str(pc_blank_normals) + "\n" + "total: " + str(total) + "\n" + "refname: " + refname) average = sum / count i = 0 weighted_sum = 0 weight_sum = 0 while i < len(weights): weighted_sum += weights[i]*scores[i] weight_sum += weights[i] i += 1 weighted_average = weighted_sum/weight_sum print "Normalization step:" + "\n" print "Regular average: " + str(average) + "\n" print "Weighted Average: " + str(weighted_average) + "\n" print "Total Insertions: " + str(count) + "\n" old_ws = 0 new_ws = 0 wcount = 0 for list in results: if list[11] == 'W': continue new_w = float(list[11])/weighted_average # Sometimes you want to multiply all the fitness values by a constant; this does that. # For example you might multiply all the values by a constant for a genetic interaction screen - where Tn-Seq is performed as usual except there's one background knockout all the mutants share. if arguments.multiply: new_w *= float(arguments.multiply) if float(list[11]) > 0: old_ws += float(list[11]) new_ws += new_w wcount += 1 list[12] = new_w if (arguments.wig): wigstring += str(list[0]) + " " + str(new_w) + "\n" old_w_mean = old_ws / wcount new_w_mean = new_ws / wcount print "Old W Average: " + str(old_w_mean) + "\n" print "New W Average: " + str(new_w_mean) + "\n" with open(arguments.outfile, "wb") as csvfile: writer = csv.writer(csvfile) writer.writerows(results) if (arguments.wig): if (arguments.normalize): with open(arguments.wig, "wb") as wigfile: wigfile.write(wigstring) else: for list in results: wigstring += str(list[0]) + " " + str(list[11]) + "\n" with open(arguments.wig, "wb") as wigfile: wigfile.write(wigstring) # ___ ___ ___ ___ ___ ___ ___ ___ # /\__\ /\ \ /\__\ /\__\ /\ \ /\ \ /\ \ /\__\ # /:/ _/_ /::\ \ |::L__L /::L_L_ /::\ \ /::\ \ /::\ \ |::L__L # /::-"\__\ /::\:\__\ |:::\__\ /:/L:\__\ /:/\:\__\ /:/\:\__\ /:/\:\__\ |:::\__\ # \;:;-",-" \/\::/ / /:;;/__/ \/_/:/ / \:\ \/__/ \:\ \/__/ \:\/:/ / /:;;/__/ # |:| | /:/ / \/__/ /:/ / \:\__\ \:\__\ \::/ / \/__/ # \|__| \/__/ \/__/ \/__/ \/__/ \/__/