8
|
1 <tool id="minfi_ppfun" name="Minfi Preprocess Funnorm" version="@MINFI_VERSION@">
|
|
2 <description>implements the functional normalization algorithm</description><macros>
|
|
3 <import>macros.xml</import>
|
|
4 </macros>
|
|
5 <expand macro="requirements">
|
|
6 <requirement type="package" version="0.6.0">bioconductor-illuminahumanmethylation450kanno.ilmn12.hg19</requirement>
|
|
7 </expand>
|
|
8 <command detect_errors="exit_code">
|
|
9 <![CDATA[
|
|
10 Rscript '$minfi_pp_script'
|
|
11 ]]>
|
|
12 </command>
|
|
13 <configfiles>
|
|
14 <configfile name="minfi_pp_script"><![CDATA[
|
|
15 require("minfi", quietly = TRUE)
|
|
16 RGSet <- get(load('$rgset'))
|
|
17
|
|
18 GRSet <- preprocessFunnorm(RGSet)
|
|
19
|
|
20 save(GRSet,file = '$grset')
|
|
21 ]]>
|
|
22 </configfile>
|
|
23 </configfiles>
|
|
24
|
|
25 <inputs>
|
|
26 <param type="data" name="rgset" format="rdata" label="RGChannelSet" help="These classes represents raw (unprocessed) data from a two color micro array; specifically an Illumina methylation array." />
|
|
27 </inputs>
|
|
28 <outputs>
|
|
29 <data name="grset" format="rdata" label="GenomicRatioSet"/>
|
|
30 </outputs>
|
|
31 <tests>
|
|
32 <test>
|
|
33 <param name="rgset" value="RGChannelSet.rdata"/>
|
|
34 <output name="grset" file="FunGenomicRatioSet.rdata"/>
|
|
35 </test>
|
|
36 </tests>
|
|
37 <help><![CDATA[
|
|
38 This tool uses the internal control probes present on the array to infer between-array technical variation. It is particularly useful for studies comparing conditions with known large-scale differences, such as cancer/normal studies, or between-tissue studies. It has been shown that for such studies, functional normalization outperforms other existing approaches (Jean-Philippe Fortin et al. 2014).
|
|
39 ]]></help>
|
|
40 <expand macro="citations" />
|
|
41 </tool>
|