Mercurial > repos > kpbioteam > ewastools
view minfi_ppfun.xml @ 16:491cf4ada3a3 draft
Uploaded
author | kpbioteam |
---|---|
date | Fri, 22 Feb 2019 08:15:31 -0500 |
parents | 432fd69157fa |
children | 9c6fbb7d5a2a |
line wrap: on
line source
<tool id="minfi_ppfun" name="Minfi Preprocess Funnorm" version="@MINFI_VERSION@"> <description>implements the functional normalization algorithm</description><macros> <import>macros.xml</import> </macros> <expand macro="requirements"> <requirement type="package" version="0.6.0">bioconductor-illuminahumanmethylation450kanno.ilmn12.hg19</requirement> </expand> <command detect_errors="exit_code"> <![CDATA[ Rscript '$minfi_pp_script' ]]> </command> <configfiles> <configfile name="minfi_pp_script"><![CDATA[ require("minfi", quietly = TRUE) RGSet <- get(load('$rgset')) GRSet <- preprocessFunnorm(RGSet) save(GRSet,file = '$grset') ]]> </configfile> </configfiles> <inputs> <param type="data" name="rgset" format="rdata" label="RGChannelSet" help="These classes represents raw (unprocessed) data from a two color micro array; specifically an Illumina methylation array." /> </inputs> <outputs> <data name="grset" format="rdata" label="GenomicRatioSet"/> </outputs> <tests> <test> <param name="rgset" value="RGChannelSet.rdata"/> <output name="grset" file="FunGenomicRatioSet.rdata"/> </test> </tests> <help><![CDATA[ This tool uses the internal control probes present on the array to infer between-array technical variation. It is particularly useful for studies comparing conditions with known large-scale differences, such as cancer/normal studies, or between-tissue studies. It has been shown that for such studies, functional normalization outperforms other existing approaches (Jean-Philippe Fortin et al. 2014). ]]></help> <expand macro="citations" /> </tool>