Mercurial > repos > ktnyt > gembassy
view GEMBASSY-1.0.3/doc/text/gkmertable.txt @ 0:8300eb051bea draft
Initial upload
author | ktnyt |
---|---|
date | Fri, 26 Jun 2015 05:19:29 -0400 |
parents | |
children |
line wrap: on
line source
gkmertable Function Create an image showing all k-mer abundance within a sequence Description gkmertable creates an image showing the abundance of all k-mers (oligonucleotides of length k) in a given sequence. For example, for tetramers (k=4), resulting image is composed of 4^4 = 256 boxes, each representing an oligomer. Oligomer name and abundance is written within these boxes, and abundance is also visualized with the box color, from white (none) to black (highly frequent). This k-mer table is alternatively known as the FCGR (frequency matrices extracted from Chaos Game Representation). Position of the oligomers can be recursively located as follows: For each letter in an oligomer, a box is subdivided into four quadrants, where A is upper left, T is lower right, G is upper right, and C is lower left. Therefore, oligomer ATGC is in the A = upper left quadrant T = lower right within the above quadrant G = upper right within the above quadrant C = lower left within the above quadrant More detailed documentation is available at http://www.g-language.org/wiki/cgr G-language SOAP service is provided by the Institute for Advanced Biosciences, Keio University. The original web service is located at the following URL: http://www.g-language.org/wiki/soap WSDL(RPC/Encoded) file is located at: http://soap.g-language.org/g-language.wsdl Documentation on G-language Genome Analysis Environment methods are provided at the Document Center http://ws.g-language.org/gdoc/ Usage Here is a sample session with gkmertable % gkmertable refseqn:NC_000913 Create an image showing all k-mer abundance within a sequence Created gkmertable.1.png Go to the input files for this example Go to the output files for this example Command line arguments Standard (Mandatory) qualifiers: [-sequence] seqall Nucleotide sequence(s) filename and optional format, or reference (input USA) Additional (Optional) qualifiers: (none) Advanced (Unprompted) qualifiers: -format string [png] Output file format. Dependent on 'convert' command (Any string) -k integer [6] Length of oligomer (Any integer value) -goutfile string [gkmertable] Output file for non interactive displays (Any string) Associated qualifiers: "-sequence" associated qualifiers -sbegin1 integer Start of each sequence to be used -send1 integer End of each sequence to be used -sreverse1 boolean Reverse (if DNA) -sask1 boolean Ask for begin/end/reverse -snucleotide1 boolean Sequence is nucleotide -sprotein1 boolean Sequence is protein -slower1 boolean Make lower case -supper1 boolean Make upper case -scircular1 boolean Sequence is circular -sformat1 string Input sequence format -iquery1 string Input query fields or ID list -ioffset1 integer Input start position offset -sdbname1 string Database name -sid1 string Entryname -ufo1 string UFO features -fformat1 string Features format -fopenfile1 string Features file name General qualifiers: -auto boolean Turn off prompts -stdout boolean Write first file to standard output -filter boolean Read first file from standard input, write first file to standard output -options boolean Prompt for standard and additional values -debug boolean Write debug output to program.dbg -verbose boolean Report some/full command line options -help boolean Report command line options and exit. More information on associated and general qualifiers can be found with -help -verbose -warning boolean Report warnings -error boolean Report errors -fatal boolean Report fatal errors -die boolean Report dying program messages -version boolean Report version number and exit Input file format The database definitions for following commands are available at http://soap.g-language.org/kbws/embossrc gkmertable reads one or more nucleotide sequences. Output file format The output from gkmertable is to an image file. Data files None. Notes None. References Arakawa, K., Mori, K., Ikeda, K., Matsuzaki, T., Konayashi, Y., and Tomita, M. (2003) G-language Genome Analysis Environment: A Workbench for Nucleotide Sequence Data Mining, Bioinformatics, 19, 305-306. Arakawa, K. and Tomita, M. (2006) G-language System as a Platform for large-scale analysis of high-throughput omics data, J. Pest Sci., 31, 7. Arakawa, K., Kido, N., Oshita, K., Tomita, M. (2010) G-language Genome Analysis Environment with REST and SOAP Web Service Interfaces, Nucleic Acids Res., 38, W700-W705. Warnings None. Diagnostic Error Messages None. Exit status It always exits with a status of 0. Known bugs None. See also gnucleotideperiodicity Checks the periodicity of certain oligonucleotides goligomercounter Counts the number of given oligomers in a sequence goligomersearch Searches oligomers in given sequence gsignature Calculate oligonucleotide usage (genomic signature) Author(s) Hidetoshi Itaya (celery@g-language.org) Institute for Advanced Biosciences, Keio University 252-0882 Japan Kazuharu Arakawa (gaou@sfc.keio.ac.jp) Institute for Advanced Biosciences, Keio University 252-0882 Japan History 2012 - Written by Hidetoshi Itaya 2013 - Fixed by Hidetoshi Itaya Target users This program is intended to be used by everyone and everything, from naive users to embedded scripts. Comments None.