Mercurial > repos > lionelguy > spades
view tools/spades_2_5/plot_spades_stats.xml @ 2:b5ce24f34dd7 draft
Uploaded
author | lionelguy |
---|---|
date | Thu, 05 Sep 2013 07:43:48 -0400 |
parents | |
children |
line wrap: on
line source
<tool id="plot_spades_stats" name="SPAdes stats" version="0.1"> <description>coverage vs. length plot</description> <requirements> <requirement type="package">R</requirement> </requirements> <command interpreter="bash">r_wrapper.sh $script_file</command> <inputs> <param name="input_scaffolds" type="data" format="tabular" label="Scaffold stats"/> <param name="input_contigs" type="data" format="tabular" label="Contig stats"/> <param name="length_co" type="integer" value="1000" min="0" label="Length cut-off" help="Contigs with length under that value are shown in red"/> <param name="coverage_co" type="integer" value="10" min="0" label="Coverage cut-off" help="Contigs with length under that value are shown in red"/> </inputs> <configfiles> <configfile name="script_file"> ## Setup R error handling to go to stderr options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) files = c("${input_contigs}", "${input_scaffolds}") types = c("Contigs", "Scaffolds") ## Start plotting device png("${out_file}", w=500, h=1000) par(mfrow=c(2,1)) ## Loop over the two files for (i in 1:length(types)){ seqs = read.table(files[i], header=FALSE, comment.char="#") colnames = c("name", "length", "coverage") names(seqs) = colnames ## Stats over all sequences sl_all = sort(seqs\$length, decreasing=TRUE) cs_all = cumsum(sl_all) s_all = sum(seqs\$length) n50_idx_all = which.min(sl_all[cs_all < 0.5*s_all]) n90_idx_all = which.min(sl_all[cs_all < 0.9*s_all]) n50_all = sl_all[n50_idx_all] n90_all = sl_all[n90_idx_all] ## Filter short seqs, redo stats seqs_filt = seqs[seqs\$length >= ${length_co} & seqs\$coverage >= ${coverage_co},] if (nrow(seqs_filt) > 0){ sl_filt = sort(seqs_filt\$length, decreasing=TRUE) cs_filt = cumsum(sl_filt) s_filt = sum(seqs_filt\$length) n50_idx_filt = which.min(sl_filt[cs_filt < 0.5*s_filt]) n90_idx_filt = which.min(sl_filt[cs_filt < 0.9*s_filt]) n50_filt = sl_filt[n50_idx_filt] n90_filt = sl_filt[n90_idx_filt] } seqs_bad = seqs[seqs\$length < ${length_co} | seqs\$coverage < ${coverage_co},] ## Length vs coverage plot(length~coverage, data=seqs, log="xy", type="n", main=paste(types[i], ": coverage vs. length", sep=""), xlab="Coverage", ylab="Length") if (nrow(seqs_bad) > 0){ points(length~coverage, data=seqs_bad, cex=0.5, col="red") } if (nrow(seqs_filt) > 0){ points(length~coverage, data=seqs_filt, cex=0.5, col="black") } abline(v=${coverage_co}, h=${length_co}, lty=2, col=grey(0.3)) legend(x="topleft", legend=c("Before/after filtering", paste(c("N50: ", "N90: ", "Median cov.: "), c(n50_all, n90_all, round(median(seqs\$coverage))), rep("/", 3), c(n50_filt, n90_filt, round(median(seqs_filt\$coverage))), sep="")), cex=0.8) } dev.off() </configfile> </configfiles> <outputs> <data format="png" name="out_file" /> </outputs> <help> **What it does** Using the output of SPAdes (a pair of fasta file and stat file for each of the contigs and scaffolds), it produces a coverage vs. contig plot. Each dot represent a contig/scaffold. Given a coverage and a length cutoff, sequences that do not meet those criteria are shown in red. Some statistics are also given (N50, N90, median contig/scaffold length) both before and after filtering. Use the "filter SPAdes output" tool to actually filter sequences. </help> </tool>