0
|
1 #include <stdlib.h>
|
|
2 #include <string.h>
|
|
3 #include <math.h>
|
|
4 #include "bcf.h"
|
|
5 #include "kmin.h"
|
|
6
|
|
7 static double g_q2p[256];
|
|
8
|
|
9 #define ITER_MAX 50
|
|
10 #define ITER_TRY 10
|
|
11 #define EPS 1e-5
|
|
12
|
|
13 extern double kf_gammaq(double, double);
|
|
14
|
|
15 /*
|
|
16 Generic routines
|
|
17 */
|
|
18 // get the 3 genotype likelihoods
|
|
19 static double *get_pdg3(const bcf1_t *b)
|
|
20 {
|
|
21 double *pdg;
|
|
22 const uint8_t *PL = 0;
|
|
23 int i, PL_len = 0;
|
|
24 // initialize g_q2p if necessary
|
|
25 if (g_q2p[0] == 0.)
|
|
26 for (i = 0; i < 256; ++i)
|
|
27 g_q2p[i] = pow(10., -i / 10.);
|
|
28 // set PL and PL_len
|
|
29 for (i = 0; i < b->n_gi; ++i) {
|
|
30 if (b->gi[i].fmt == bcf_str2int("PL", 2)) {
|
|
31 PL = (const uint8_t*)b->gi[i].data;
|
|
32 PL_len = b->gi[i].len;
|
|
33 break;
|
|
34 }
|
|
35 }
|
|
36 if (i == b->n_gi) return 0; // no PL
|
|
37 // fill pdg
|
|
38 pdg = malloc(3 * b->n_smpl * sizeof(double));
|
|
39 for (i = 0; i < b->n_smpl; ++i) {
|
|
40 const uint8_t *pi = PL + i * PL_len;
|
|
41 double *p = pdg + i * 3;
|
|
42 p[0] = g_q2p[pi[2]]; p[1] = g_q2p[pi[1]]; p[2] = g_q2p[pi[0]];
|
|
43 }
|
|
44 return pdg;
|
|
45 }
|
|
46
|
|
47 // estimate site allele frequency in a very naive and inaccurate way
|
|
48 static double est_freq(int n, const double *pdg)
|
|
49 {
|
|
50 int i, gcnt[3], tmp1;
|
|
51 // get a rough estimate of the genotype frequency
|
|
52 gcnt[0] = gcnt[1] = gcnt[2] = 0;
|
|
53 for (i = 0; i < n; ++i) {
|
|
54 const double *p = pdg + i * 3;
|
|
55 if (p[0] != 1. || p[1] != 1. || p[2] != 1.) {
|
|
56 int which = p[0] > p[1]? 0 : 1;
|
|
57 which = p[which] > p[2]? which : 2;
|
|
58 ++gcnt[which];
|
|
59 }
|
|
60 }
|
|
61 tmp1 = gcnt[0] + gcnt[1] + gcnt[2];
|
|
62 return (tmp1 == 0)? -1.0 : (.5 * gcnt[1] + gcnt[2]) / tmp1;
|
|
63 }
|
|
64
|
|
65 /*
|
|
66 Single-locus EM
|
|
67 */
|
|
68
|
|
69 typedef struct {
|
|
70 int beg, end;
|
|
71 const double *pdg;
|
|
72 } minaux1_t;
|
|
73
|
|
74 static double prob1(double f, void *data)
|
|
75 {
|
|
76 minaux1_t *a = (minaux1_t*)data;
|
|
77 double p = 1., l = 0., f3[3];
|
|
78 int i;
|
|
79 // printf("brent %lg\n", f);
|
|
80 if (f < 0 || f > 1) return 1e300;
|
|
81 f3[0] = (1.-f)*(1.-f); f3[1] = 2.*f*(1.-f); f3[2] = f*f;
|
|
82 for (i = a->beg; i < a->end; ++i) {
|
|
83 const double *pdg = a->pdg + i * 3;
|
|
84 p *= pdg[0] * f3[0] + pdg[1] * f3[1] + pdg[2] * f3[2];
|
|
85 if (p < 1e-200) l -= log(p), p = 1.;
|
|
86 }
|
|
87 return l - log(p);
|
|
88 }
|
|
89
|
|
90 // one EM iteration for allele frequency estimate
|
|
91 static double freq_iter(double *f, const double *_pdg, int beg, int end)
|
|
92 {
|
|
93 double f0 = *f, f3[3], err;
|
|
94 int i;
|
|
95 // printf("em %lg\n", *f);
|
|
96 f3[0] = (1.-f0)*(1.-f0); f3[1] = 2.*f0*(1.-f0); f3[2] = f0*f0;
|
|
97 for (i = beg, f0 = 0.; i < end; ++i) {
|
|
98 const double *pdg = _pdg + i * 3;
|
|
99 f0 += (pdg[1] * f3[1] + 2. * pdg[2] * f3[2])
|
|
100 / (pdg[0] * f3[0] + pdg[1] * f3[1] + pdg[2] * f3[2]);
|
|
101 }
|
|
102 f0 /= (end - beg) * 2;
|
|
103 err = fabs(f0 - *f);
|
|
104 *f = f0;
|
|
105 return err;
|
|
106 }
|
|
107
|
|
108 /* The following function combines EM and Brent's method. When the signal from
|
|
109 * the data is strong, EM is faster but sometimes, EM may converge very slowly.
|
|
110 * When this happens, we switch to Brent's method. The idea is learned from
|
|
111 * Rasmus Nielsen.
|
|
112 */
|
|
113 static double freqml(double f0, int beg, int end, const double *pdg)
|
|
114 {
|
|
115 int i;
|
|
116 double f;
|
|
117 for (i = 0, f = f0; i < ITER_TRY; ++i)
|
|
118 if (freq_iter(&f, pdg, beg, end) < EPS) break;
|
|
119 if (i == ITER_TRY) { // haven't converged yet; try Brent's method
|
|
120 minaux1_t a;
|
|
121 a.beg = beg; a.end = end; a.pdg = pdg;
|
|
122 kmin_brent(prob1, f0 == f? .5*f0 : f0, f, (void*)&a, EPS, &f);
|
|
123 }
|
|
124 return f;
|
|
125 }
|
|
126
|
|
127 // one EM iteration for genotype frequency estimate
|
|
128 static double g3_iter(double g[3], const double *_pdg, int beg, int end)
|
|
129 {
|
|
130 double err, gg[3];
|
|
131 int i;
|
|
132 gg[0] = gg[1] = gg[2] = 0.;
|
|
133 // printf("%lg,%lg,%lg\n", g[0], g[1], g[2]);
|
|
134 for (i = beg; i < end; ++i) {
|
|
135 double sum, tmp[3];
|
|
136 const double *pdg = _pdg + i * 3;
|
|
137 tmp[0] = pdg[0] * g[0]; tmp[1] = pdg[1] * g[1]; tmp[2] = pdg[2] * g[2];
|
|
138 sum = (tmp[0] + tmp[1] + tmp[2]) * (end - beg);
|
|
139 gg[0] += tmp[0] / sum; gg[1] += tmp[1] / sum; gg[2] += tmp[2] / sum;
|
|
140 }
|
|
141 err = fabs(gg[0] - g[0]) > fabs(gg[1] - g[1])? fabs(gg[0] - g[0]) : fabs(gg[1] - g[1]);
|
|
142 err = err > fabs(gg[2] - g[2])? err : fabs(gg[2] - g[2]);
|
|
143 g[0] = gg[0]; g[1] = gg[1]; g[2] = gg[2];
|
|
144 return err;
|
|
145 }
|
|
146
|
|
147 // perform likelihood ratio test
|
|
148 static double lk_ratio_test(int n, int n1, const double *pdg, double f3[3][3])
|
|
149 {
|
|
150 double r;
|
|
151 int i;
|
|
152 for (i = 0, r = 1.; i < n1; ++i) {
|
|
153 const double *p = pdg + i * 3;
|
|
154 r *= (p[0] * f3[1][0] + p[1] * f3[1][1] + p[2] * f3[1][2])
|
|
155 / (p[0] * f3[0][0] + p[1] * f3[0][1] + p[2] * f3[0][2]);
|
|
156 }
|
|
157 for (; i < n; ++i) {
|
|
158 const double *p = pdg + i * 3;
|
|
159 r *= (p[0] * f3[2][0] + p[1] * f3[2][1] + p[2] * f3[2][2])
|
|
160 / (p[0] * f3[0][0] + p[1] * f3[0][1] + p[2] * f3[0][2]);
|
|
161 }
|
|
162 return r;
|
|
163 }
|
|
164
|
|
165 // x[0]: ref frequency
|
|
166 // x[1..3]: alt-alt, alt-ref, ref-ref frequenc
|
|
167 // x[4]: HWE P-value
|
|
168 // x[5..6]: group1 freq, group2 freq
|
|
169 // x[7]: 1-degree P-value
|
|
170 // x[8]: 2-degree P-value
|
|
171 int bcf_em1(const bcf1_t *b, int n1, int flag, double x[10])
|
|
172 {
|
|
173 double *pdg;
|
|
174 int i, n, n2;
|
|
175 if (b->n_alleles < 2) return -1; // one allele only
|
|
176 // initialization
|
|
177 if (n1 < 0 || n1 > b->n_smpl) n1 = 0;
|
|
178 if (flag & 1<<7) flag |= 7<<5; // compute group freq if LRT is required
|
|
179 if (flag & 0xf<<1) flag |= 0xf<<1;
|
|
180 n = b->n_smpl; n2 = n - n1;
|
|
181 pdg = get_pdg3(b);
|
|
182 if (pdg == 0) return -1;
|
|
183 for (i = 0; i < 10; ++i) x[i] = -1.; // set to negative
|
|
184 {
|
|
185 if ((x[0] = est_freq(n, pdg)) < 0.) {
|
|
186 free(pdg);
|
|
187 return -1; // no data
|
|
188 }
|
|
189 x[0] = freqml(x[0], 0, n, pdg);
|
|
190 }
|
|
191 if (flag & (0xf<<1|3<<8)) { // estimate the genotype frequency and test HWE
|
|
192 double *g = x + 1, f3[3], r;
|
|
193 f3[0] = g[0] = (1 - x[0]) * (1 - x[0]);
|
|
194 f3[1] = g[1] = 2 * x[0] * (1 - x[0]);
|
|
195 f3[2] = g[2] = x[0] * x[0];
|
|
196 for (i = 0; i < ITER_MAX; ++i)
|
|
197 if (g3_iter(g, pdg, 0, n) < EPS) break;
|
|
198 // Hardy-Weinberg equilibrium (HWE)
|
|
199 for (i = 0, r = 1.; i < n; ++i) {
|
|
200 double *p = pdg + i * 3;
|
|
201 r *= (p[0] * g[0] + p[1] * g[1] + p[2] * g[2]) / (p[0] * f3[0] + p[1] * f3[1] + p[2] * f3[2]);
|
|
202 }
|
|
203 x[4] = kf_gammaq(.5, log(r));
|
|
204 }
|
|
205 if ((flag & 7<<5) && n1 > 0 && n1 < n) { // group frequency
|
|
206 x[5] = freqml(x[0], 0, n1, pdg);
|
|
207 x[6] = freqml(x[0], n1, n, pdg);
|
|
208 }
|
|
209 if ((flag & 1<<7) && n1 > 0 && n1 < n) { // 1-degree P-value
|
|
210 double f[3], f3[3][3], tmp;
|
|
211 f[0] = x[0]; f[1] = x[5]; f[2] = x[6];
|
|
212 for (i = 0; i < 3; ++i)
|
|
213 f3[i][0] = (1-f[i])*(1-f[i]), f3[i][1] = 2*f[i]*(1-f[i]), f3[i][2] = f[i]*f[i];
|
|
214 tmp = log(lk_ratio_test(n, n1, pdg, f3));
|
|
215 if (tmp < 0) tmp = 0;
|
|
216 x[7] = kf_gammaq(.5, tmp);
|
|
217 }
|
|
218 if ((flag & 3<<8) && n1 > 0 && n1 < n) { // 2-degree P-value
|
|
219 double g[3][3], tmp;
|
|
220 for (i = 0; i < 3; ++i) memcpy(g[i], x + 1, 3 * sizeof(double));
|
|
221 for (i = 0; i < ITER_MAX; ++i)
|
|
222 if (g3_iter(g[1], pdg, 0, n1) < EPS) break;
|
|
223 for (i = 0; i < ITER_MAX; ++i)
|
|
224 if (g3_iter(g[2], pdg, n1, n) < EPS) break;
|
|
225 tmp = log(lk_ratio_test(n, n1, pdg, g));
|
|
226 if (tmp < 0) tmp = 0;
|
|
227 x[8] = kf_gammaq(1., tmp);
|
|
228 }
|
|
229 // free
|
|
230 free(pdg);
|
|
231 return 0;
|
|
232 }
|
|
233
|
|
234 /*
|
|
235 Two-locus EM (LD)
|
|
236 */
|
|
237
|
|
238 #define _G1(h, k) ((h>>1&1) + (k>>1&1))
|
|
239 #define _G2(h, k) ((h&1) + (k&1))
|
|
240
|
|
241 // 0: the previous site; 1: the current site
|
|
242 static int pair_freq_iter(int n, double *pdg[2], double f[4])
|
|
243 {
|
|
244 double ff[4];
|
|
245 int i, k, h;
|
|
246 // printf("%lf,%lf,%lf,%lf\n", f[0], f[1], f[2], f[3]);
|
|
247 memset(ff, 0, 4 * sizeof(double));
|
|
248 for (i = 0; i < n; ++i) {
|
|
249 double *p[2], sum, tmp;
|
|
250 p[0] = pdg[0] + i * 3; p[1] = pdg[1] + i * 3;
|
|
251 for (k = 0, sum = 0.; k < 4; ++k)
|
|
252 for (h = 0; h < 4; ++h)
|
|
253 sum += f[k] * f[h] * p[0][_G1(k,h)] * p[1][_G2(k,h)];
|
|
254 for (k = 0; k < 4; ++k) {
|
|
255 tmp = f[0] * (p[0][_G1(0,k)] * p[1][_G2(0,k)] + p[0][_G1(k,0)] * p[1][_G2(k,0)])
|
|
256 + f[1] * (p[0][_G1(1,k)] * p[1][_G2(1,k)] + p[0][_G1(k,1)] * p[1][_G2(k,1)])
|
|
257 + f[2] * (p[0][_G1(2,k)] * p[1][_G2(2,k)] + p[0][_G1(k,2)] * p[1][_G2(k,2)])
|
|
258 + f[3] * (p[0][_G1(3,k)] * p[1][_G2(3,k)] + p[0][_G1(k,3)] * p[1][_G2(k,3)]);
|
|
259 ff[k] += f[k] * tmp / sum;
|
|
260 }
|
|
261 }
|
|
262 for (k = 0; k < 4; ++k) f[k] = ff[k] / (2 * n);
|
|
263 return 0;
|
|
264 }
|
|
265
|
|
266 double bcf_pair_freq(const bcf1_t *b0, const bcf1_t *b1, double f[4])
|
|
267 {
|
|
268 const bcf1_t *b[2];
|
|
269 int i, j, n_smpl;
|
|
270 double *pdg[2], flast[4], r, f0[2];
|
|
271 // initialize others
|
|
272 if (b0->n_smpl != b1->n_smpl) return -1; // different number of samples
|
|
273 n_smpl = b0->n_smpl;
|
|
274 b[0] = b0; b[1] = b1;
|
|
275 f[0] = f[1] = f[2] = f[3] = -1.;
|
|
276 if (b[0]->n_alleles < 2 || b[1]->n_alleles < 2) return -1; // one allele only
|
|
277 pdg[0] = get_pdg3(b0); pdg[1] = get_pdg3(b1);
|
|
278 if (pdg[0] == 0 || pdg[1] == 0) {
|
|
279 free(pdg[0]); free(pdg[1]);
|
|
280 return -1;
|
|
281 }
|
|
282 // set the initial value
|
|
283 f0[0] = est_freq(n_smpl, pdg[0]);
|
|
284 f0[1] = est_freq(n_smpl, pdg[1]);
|
|
285 f[0] = (1 - f0[0]) * (1 - f0[1]); f[3] = f0[0] * f0[1];
|
|
286 f[1] = (1 - f0[0]) * f0[1]; f[2] = f0[0] * (1 - f0[1]);
|
|
287 // iteration
|
|
288 for (j = 0; j < ITER_MAX; ++j) {
|
|
289 double eps = 0;
|
|
290 memcpy(flast, f, 4 * sizeof(double));
|
|
291 pair_freq_iter(n_smpl, pdg, f);
|
|
292 for (i = 0; i < 4; ++i) {
|
|
293 double x = fabs(f[i] - flast[i]);
|
|
294 if (x > eps) eps = x;
|
|
295 }
|
|
296 if (eps < EPS) break;
|
|
297 }
|
|
298 // free
|
|
299 free(pdg[0]); free(pdg[1]);
|
|
300 { // calculate r^2
|
|
301 double p[2], q[2], D;
|
|
302 p[0] = f[0] + f[1]; q[0] = 1 - p[0];
|
|
303 p[1] = f[0] + f[2]; q[1] = 1 - p[1];
|
|
304 D = f[0] * f[3] - f[1] * f[2];
|
|
305 r = sqrt(D * D / (p[0] * p[1] * q[0] * q[1]));
|
|
306 // printf("R(%lf,%lf,%lf,%lf)=%lf\n", f[0], f[1], f[2], f[3], r);
|
|
307 if (isnan(r)) r = -1.;
|
|
308 }
|
|
309 return r;
|
|
310 }
|