Mercurial > repos > lsong10 > psiclass
comparison PsiCLASS-1.0.2/gamma.cpp @ 0:903fc43d6227 draft default tip
Uploaded
| author | lsong10 |
|---|---|
| date | Fri, 26 Mar 2021 16:52:45 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:903fc43d6227 |
|---|---|
| 1 #include "gamma.hpp" | |
| 2 | |
| 3 /** The digamma function in long double precision. | |
| 4 * @param x the real value of the argument | |
| 5 * @return the value of the digamma (psi) function at that point | |
| 6 * @author Richard J. Mathar | |
| 7 * @since 2005-11-24 | |
| 8 */ | |
| 9 long double digammal(long double x) | |
| 10 { | |
| 11 /* force into the interval 1..3 */ | |
| 12 if( x < 0.0L ) | |
| 13 return digammal(1.0L-x)+M_PIl/tanl(M_PIl*(1.0L-x)) ; /* reflection formula */ | |
| 14 else if( x < 1.0L ) | |
| 15 return digammal(1.0L+x)-1.0L/x ; | |
| 16 else if ( x == 1.0L) | |
| 17 return -M_GAMMAl ; | |
| 18 else if ( x == 2.0L) | |
| 19 return 1.0L-M_GAMMAl ; | |
| 20 else if ( x == 3.0L) | |
| 21 return 1.5L-M_GAMMAl ; | |
| 22 else if ( x > 3.0L) | |
| 23 /* duplication formula */ | |
| 24 return 0.5L*(digammal(x/2.0L)+digammal((x+1.0L)/2.0L))+M_LN2l ; | |
| 25 else | |
| 26 { | |
| 27 /* Just for your information, the following lines contain | |
| 28 * the Maple source code to re-generate the table that is | |
| 29 * eventually becoming the Kncoe[] array below | |
| 30 * interface(prettyprint=0) : | |
| 31 * Digits := 63 : | |
| 32 * r := 0 : | |
| 33 * | |
| 34 * for l from 1 to 60 do | |
| 35 * d := binomial(-1/2,l) : | |
| 36 * r := r+d*(-1)^l*(Zeta(2*l+1) -1) ; | |
| 37 * evalf(r) ; | |
| 38 * print(%,evalf(1+Psi(1)-r)) ; | |
| 39 *o d : | |
| 40 * | |
| 41 * for N from 1 to 28 do | |
| 42 * r := 0 : | |
| 43 * n := N-1 : | |
| 44 * | |
| 45 * for l from iquo(n+3,2) to 70 do | |
| 46 * d := 0 : | |
| 47 * for s from 0 to n+1 do | |
| 48 * d := d+(-1)^s*binomial(n+1,s)*binomial((s-1)/2,l) : | |
| 49 * od : | |
| 50 * if 2*l-n > 1 then | |
| 51 * r := r+d*(-1)^l*(Zeta(2*l-n) -1) : | |
| 52 * fi : | |
| 53 * od : | |
| 54 * print(evalf((-1)^n*2*r)) ; | |
| 55 *od : | |
| 56 *quit : | |
| 57 */ | |
| 58 static long double Kncoe[] = { .30459198558715155634315638246624251L, | |
| 59 .72037977439182833573548891941219706L, -.12454959243861367729528855995001087L, | |
| 60 .27769457331927827002810119567456810e-1L, -.67762371439822456447373550186163070e-2L, | |
| 61 .17238755142247705209823876688592170e-2L, -.44817699064252933515310345718960928e-3L, | |
| 62 .11793660000155572716272710617753373e-3L, -.31253894280980134452125172274246963e-4L, | |
| 63 .83173997012173283398932708991137488e-5L, -.22191427643780045431149221890172210e-5L, | |
| 64 .59302266729329346291029599913617915e-6L, -.15863051191470655433559920279603632e-6L, | |
| 65 .42459203983193603241777510648681429e-7L, -.11369129616951114238848106591780146e-7L, | |
| 66 .304502217295931698401459168423403510e-8L, -.81568455080753152802915013641723686e-9L, | |
| 67 .21852324749975455125936715817306383e-9L, -.58546491441689515680751900276454407e-10L, | |
| 68 .15686348450871204869813586459513648e-10L, -.42029496273143231373796179302482033e-11L, | |
| 69 .11261435719264907097227520956710754e-11L, -.30174353636860279765375177200637590e-12L, | |
| 70 .80850955256389526647406571868193768e-13L, -.21663779809421233144009565199997351e-13L, | |
| 71 .58047634271339391495076374966835526e-14L, -.15553767189204733561108869588173845e-14L, | |
| 72 .41676108598040807753707828039353330e-15L, -.11167065064221317094734023242188463e-15L } ; | |
| 73 | |
| 74 register long double Tn_1 = 1.0L ; /* T_{n-1}(x), started at n=1 */ | |
| 75 register long double Tn = x-2.0L ; /* T_{n}(x) , started at n=1 */ | |
| 76 register long double resul = Kncoe[0] + Kncoe[1]*Tn ; | |
| 77 | |
| 78 x -= 2.0L ; | |
| 79 int n ; | |
| 80 | |
| 81 for( n = 2 ; n < sizeof(Kncoe)/sizeof(long double) ;n++) | |
| 82 { | |
| 83 const long double Tn1 = 2.0L * x * Tn - Tn_1 ; /* Chebyshev recursion, Eq. 22.7.4 Abramowitz-Stegun */ | |
| 84 resul += Kncoe[n]*Tn1 ; | |
| 85 Tn_1 = Tn ; | |
| 86 Tn = Tn1 ; | |
| 87 } | |
| 88 return resul ; | |
| 89 } | |
| 90 } | |
| 91 | |
| 92 | |
| 93 | |
| 94 double trigamma ( double x, int *ifault ) | |
| 95 | |
| 96 //**************************************************************************** | |
| 97 // purpose: | |
| 98 // | |
| 99 // trigamma calculates trigamma(x) = d**2 log(gamma(x)) / dx**2 | |
| 100 // | |
| 101 // licensing: | |
| 102 // | |
| 103 // this code is distributed under the gnu lgpl license. | |
| 104 // | |
| 105 // modified: | |
| 106 // | |
| 107 // 19 january 2008 | |
| 108 // | |
| 109 // author: | |
| 110 // | |
| 111 // original fortran77 version by be schneider. | |
| 112 // c++ version by john burkardt. | |
| 113 // | |
| 114 // reference: | |
| 115 // | |
| 116 // be schneider, | |
| 117 // algorithm as 121: | |
| 118 // trigamma function, | |
| 119 // applied statistics, | |
| 120 // volume 27, number 1, pages 97-99, 1978. | |
| 121 // | |
| 122 // parameters: | |
| 123 // | |
| 124 // input, double x, the argument of the trigamma function. | |
| 125 // 0 < x. | |
| 126 // | |
| 127 // output, int *ifault, error flag. | |
| 128 // 0, no error. | |
| 129 // 1, x <= 0. | |
| 130 // | |
| 131 // output, double trigamma, the value of the trigamma function at x. | |
| 132 // | |
| 133 { | |
| 134 double a = 0.0001; | |
| 135 double b = 5.0; | |
| 136 double b2 = 0.1666666667; | |
| 137 double b4 = -0.03333333333; | |
| 138 double b6 = 0.02380952381; | |
| 139 double b8 = -0.03333333333; | |
| 140 double value; | |
| 141 double y; | |
| 142 double z; | |
| 143 // | |
| 144 // check the input. | |
| 145 // | |
| 146 if ( x <= 0.0 ) | |
| 147 { | |
| 148 *ifault = 1; | |
| 149 value = 0.0; | |
| 150 return value; | |
| 151 } | |
| 152 | |
| 153 *ifault = 0; | |
| 154 z = x; | |
| 155 // | |
| 156 // use small value approximation if x <= a. | |
| 157 // | |
| 158 if ( x <= a ) | |
| 159 { | |
| 160 value = 1.0 / x / x; | |
| 161 return value; | |
| 162 } | |
| 163 // | |
| 164 // increase argument to ( x + i ) >= b. | |
| 165 // | |
| 166 value = 0.0; | |
| 167 | |
| 168 while ( z < b ) | |
| 169 { | |
| 170 value = value + 1.0 / z / z; | |
| 171 z = z + 1.0; | |
| 172 } | |
| 173 // | |
| 174 // apply asymptotic formula if argument is b or greater. | |
| 175 // | |
| 176 y = 1.0 / z / z; | |
| 177 | |
| 178 value = value + 0.5 * | |
| 179 y + ( 1.0 + y * ( b2+ y * ( b4 + y * ( b6+ y * b8 )))) / z; | |
| 180 | |
| 181 return value; | |
| 182 } | |
| 183 | |
| 184 | |
| 185 double LogGammaDensity( double x, double k, double theta ) | |
| 186 { | |
| 187 return -k * log( theta ) + ( k - 1 ) * log( x ) - x / theta - lgamma( k ) ; | |
| 188 } | |
| 189 | |
| 190 double MixtureGammaAssignment( double x, double pi, double* k, double *theta ) | |
| 191 { | |
| 192 if ( pi == 1 ) | |
| 193 return 0 ; | |
| 194 else if ( pi == 0 ) | |
| 195 return 1 ; | |
| 196 | |
| 197 double lf0 = LogGammaDensity( x, k[0], theta[0] ) ; | |
| 198 double lf1 = LogGammaDensity( x, k[1], theta[1] ) ; | |
| 199 | |
| 200 return (double)1.0 / ( 1.0 + exp( lf1 + log( 1 - pi ) - lf0 - log( pi ) ) ) ; | |
| 201 } |
