Mercurial > repos > lsong10 > psiclass
comparison PsiCLASS-1.0.2/samtools-0.1.19/bcftools/prob1.c @ 0:903fc43d6227 draft default tip
Uploaded
author | lsong10 |
---|---|
date | Fri, 26 Mar 2021 16:52:45 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:903fc43d6227 |
---|---|
1 #include <math.h> | |
2 #include <stdlib.h> | |
3 #include <string.h> | |
4 #include <stdio.h> | |
5 #include <errno.h> | |
6 #include <assert.h> | |
7 #include <limits.h> | |
8 #include <zlib.h> | |
9 #include "prob1.h" | |
10 #include "kstring.h" | |
11 | |
12 #include "kseq.h" | |
13 KSTREAM_INIT(gzFile, gzread, 16384) | |
14 | |
15 #define MC_MAX_EM_ITER 16 | |
16 #define MC_EM_EPS 1e-5 | |
17 #define MC_DEF_INDEL 0.15 | |
18 | |
19 gzFile bcf_p1_fp_lk; | |
20 | |
21 unsigned char seq_nt4_table[256] = { | |
22 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
23 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
24 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 /*'-'*/, 4, 4, | |
25 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
26 4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, | |
27 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
28 4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, | |
29 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
30 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
31 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
32 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
33 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
34 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
35 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
36 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
37 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 | |
38 }; | |
39 | |
40 struct __bcf_p1aux_t { | |
41 int n, M, n1, is_indel; | |
42 uint8_t *ploidy; // haploid or diploid ONLY | |
43 double *q2p, *pdg; // pdg -> P(D|g) | |
44 double *phi, *phi_indel; | |
45 double *z, *zswap; // aux for afs | |
46 double *z1, *z2, *phi1, *phi2; // only calculated when n1 is set | |
47 double **hg; // hypergeometric distribution | |
48 double *lf; // log factorial | |
49 double t, t1, t2; | |
50 double *afs, *afs1; // afs: accumulative AFS; afs1: site posterior distribution | |
51 const uint8_t *PL; // point to PL | |
52 int PL_len; | |
53 }; | |
54 | |
55 void bcf_p1_indel_prior(bcf_p1aux_t *ma, double x) | |
56 { | |
57 int i; | |
58 for (i = 0; i < ma->M; ++i) | |
59 ma->phi_indel[i] = ma->phi[i] * x; | |
60 ma->phi_indel[ma->M] = 1. - ma->phi[ma->M] * x; | |
61 } | |
62 | |
63 static void init_prior(int type, double theta, int M, double *phi) | |
64 { | |
65 int i; | |
66 if (type == MC_PTYPE_COND2) { | |
67 for (i = 0; i <= M; ++i) | |
68 phi[i] = 2. * (i + 1) / (M + 1) / (M + 2); | |
69 } else if (type == MC_PTYPE_FLAT) { | |
70 for (i = 0; i <= M; ++i) | |
71 phi[i] = 1. / (M + 1); | |
72 } else { | |
73 double sum; | |
74 for (i = 0, sum = 0.; i < M; ++i) | |
75 sum += (phi[i] = theta / (M - i)); | |
76 phi[M] = 1. - sum; | |
77 } | |
78 } | |
79 | |
80 void bcf_p1_init_prior(bcf_p1aux_t *ma, int type, double theta) | |
81 { | |
82 init_prior(type, theta, ma->M, ma->phi); | |
83 bcf_p1_indel_prior(ma, MC_DEF_INDEL); | |
84 } | |
85 | |
86 void bcf_p1_init_subprior(bcf_p1aux_t *ma, int type, double theta) | |
87 { | |
88 if (ma->n1 <= 0 || ma->n1 >= ma->M) return; | |
89 init_prior(type, theta, 2*ma->n1, ma->phi1); | |
90 init_prior(type, theta, 2*(ma->n - ma->n1), ma->phi2); | |
91 } | |
92 | |
93 int bcf_p1_read_prior(bcf_p1aux_t *ma, const char *fn) | |
94 { | |
95 gzFile fp; | |
96 kstring_t s; | |
97 kstream_t *ks; | |
98 long double sum; | |
99 int dret, k; | |
100 memset(&s, 0, sizeof(kstring_t)); | |
101 fp = strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r"); | |
102 ks = ks_init(fp); | |
103 memset(ma->phi, 0, sizeof(double) * (ma->M + 1)); | |
104 while (ks_getuntil(ks, '\n', &s, &dret) >= 0) { | |
105 if (strstr(s.s, "[afs] ") == s.s) { | |
106 char *p = s.s + 6; | |
107 for (k = 0; k <= ma->M; ++k) { | |
108 int x; | |
109 double y; | |
110 x = strtol(p, &p, 10); | |
111 if (x != k && (errno == EINVAL || errno == ERANGE)) return -1; | |
112 ++p; | |
113 y = strtod(p, &p); | |
114 if (y == 0. && (errno == EINVAL || errno == ERANGE)) return -1; | |
115 ma->phi[ma->M - k] += y; | |
116 } | |
117 } | |
118 } | |
119 ks_destroy(ks); | |
120 gzclose(fp); | |
121 free(s.s); | |
122 for (sum = 0., k = 0; k <= ma->M; ++k) sum += ma->phi[k]; | |
123 fprintf(stderr, "[prior]"); | |
124 for (k = 0; k <= ma->M; ++k) ma->phi[k] /= sum; | |
125 for (k = 0; k <= ma->M; ++k) fprintf(stderr, " %d:%.3lg", k, ma->phi[ma->M - k]); | |
126 fputc('\n', stderr); | |
127 for (sum = 0., k = 1; k < ma->M; ++k) sum += ma->phi[ma->M - k] * (2.* k * (ma->M - k) / ma->M / (ma->M - 1)); | |
128 fprintf(stderr, "[%s] heterozygosity=%lf, ", __func__, (double)sum); | |
129 for (sum = 0., k = 1; k <= ma->M; ++k) sum += k * ma->phi[ma->M - k] / ma->M; | |
130 fprintf(stderr, "theta=%lf\n", (double)sum); | |
131 bcf_p1_indel_prior(ma, MC_DEF_INDEL); | |
132 return 0; | |
133 } | |
134 | |
135 bcf_p1aux_t *bcf_p1_init(int n, uint8_t *ploidy) | |
136 { | |
137 bcf_p1aux_t *ma; | |
138 int i; | |
139 ma = calloc(1, sizeof(bcf_p1aux_t)); | |
140 ma->n1 = -1; | |
141 ma->n = n; ma->M = 2 * n; | |
142 if (ploidy) { | |
143 ma->ploidy = malloc(n); | |
144 memcpy(ma->ploidy, ploidy, n); | |
145 for (i = 0, ma->M = 0; i < n; ++i) ma->M += ploidy[i]; | |
146 if (ma->M == 2 * n) { | |
147 free(ma->ploidy); | |
148 ma->ploidy = 0; | |
149 } | |
150 } | |
151 ma->q2p = calloc(256, sizeof(double)); | |
152 ma->pdg = calloc(3 * ma->n, sizeof(double)); | |
153 ma->phi = calloc(ma->M + 1, sizeof(double)); | |
154 ma->phi_indel = calloc(ma->M + 1, sizeof(double)); | |
155 ma->phi1 = calloc(ma->M + 1, sizeof(double)); | |
156 ma->phi2 = calloc(ma->M + 1, sizeof(double)); | |
157 ma->z = calloc(ma->M + 1, sizeof(double)); | |
158 ma->zswap = calloc(ma->M + 1, sizeof(double)); | |
159 ma->z1 = calloc(ma->M + 1, sizeof(double)); // actually we do not need this large | |
160 ma->z2 = calloc(ma->M + 1, sizeof(double)); | |
161 ma->afs = calloc(ma->M + 1, sizeof(double)); | |
162 ma->afs1 = calloc(ma->M + 1, sizeof(double)); | |
163 ma->lf = calloc(ma->M + 1, sizeof(double)); | |
164 for (i = 0; i < 256; ++i) | |
165 ma->q2p[i] = pow(10., -i / 10.); | |
166 for (i = 0; i <= ma->M; ++i) ma->lf[i] = lgamma(i + 1); | |
167 bcf_p1_init_prior(ma, MC_PTYPE_FULL, 1e-3); // the simplest prior | |
168 return ma; | |
169 } | |
170 | |
171 int bcf_p1_get_M(bcf_p1aux_t *b) { return b->M; } | |
172 | |
173 int bcf_p1_set_n1(bcf_p1aux_t *b, int n1) | |
174 { | |
175 if (n1 == 0 || n1 >= b->n) return -1; | |
176 if (b->M != b->n * 2) { | |
177 fprintf(stderr, "[%s] unable to set `n1' when there are haploid samples.\n", __func__); | |
178 return -1; | |
179 } | |
180 b->n1 = n1; | |
181 return 0; | |
182 } | |
183 | |
184 void bcf_p1_set_ploidy(bcf1_t *b, bcf_p1aux_t *ma) | |
185 { | |
186 // bcf_p1aux_t fields are not visible outside of prob1.c, hence this wrapper. | |
187 // Ideally, this should set ploidy per site to allow pseudo-autosomal regions | |
188 b->ploidy = ma->ploidy; | |
189 } | |
190 | |
191 void bcf_p1_destroy(bcf_p1aux_t *ma) | |
192 { | |
193 if (ma) { | |
194 int k; | |
195 free(ma->lf); | |
196 if (ma->hg && ma->n1 > 0) { | |
197 for (k = 0; k <= 2*ma->n1; ++k) free(ma->hg[k]); | |
198 free(ma->hg); | |
199 } | |
200 free(ma->ploidy); free(ma->q2p); free(ma->pdg); | |
201 free(ma->phi); free(ma->phi_indel); free(ma->phi1); free(ma->phi2); | |
202 free(ma->z); free(ma->zswap); free(ma->z1); free(ma->z2); | |
203 free(ma->afs); free(ma->afs1); | |
204 free(ma); | |
205 } | |
206 } | |
207 | |
208 extern double kf_gammap(double s, double z); | |
209 int test16(bcf1_t *b, anno16_t *a); | |
210 | |
211 // Wigginton 2005, PMID: 15789306 | |
212 // written by Jan Wigginton | |
213 double calc_hwe(int obs_hom1, int obs_hom2, int obs_hets) | |
214 { | |
215 if (obs_hom1 + obs_hom2 + obs_hets == 0 ) return 1; | |
216 | |
217 assert(obs_hom1 >= 0 && obs_hom2 >= 0 && obs_hets >= 0); | |
218 | |
219 int obs_homc = obs_hom1 < obs_hom2 ? obs_hom2 : obs_hom1; | |
220 int obs_homr = obs_hom1 < obs_hom2 ? obs_hom1 : obs_hom2; | |
221 | |
222 int rare_copies = 2 * obs_homr + obs_hets; | |
223 int genotypes = obs_hets + obs_homc + obs_homr; | |
224 | |
225 double *het_probs = (double*) calloc(rare_copies+1, sizeof(double)); | |
226 | |
227 /* start at midpoint */ | |
228 int mid = rare_copies * (2 * genotypes - rare_copies) / (2 * genotypes); | |
229 | |
230 /* check to ensure that midpoint and rare alleles have same parity */ | |
231 if ((rare_copies & 1) ^ (mid & 1)) mid++; | |
232 | |
233 int curr_hets = mid; | |
234 int curr_homr = (rare_copies - mid) / 2; | |
235 int curr_homc = genotypes - curr_hets - curr_homr; | |
236 | |
237 het_probs[mid] = 1.0; | |
238 double sum = het_probs[mid]; | |
239 for (curr_hets = mid; curr_hets > 1; curr_hets -= 2) | |
240 { | |
241 het_probs[curr_hets - 2] = het_probs[curr_hets] * curr_hets * (curr_hets - 1.0) / (4.0 * (curr_homr + 1.0) * (curr_homc + 1.0)); | |
242 sum += het_probs[curr_hets - 2]; | |
243 | |
244 /* 2 fewer heterozygotes for next iteration -> add one rare, one common homozygote */ | |
245 curr_homr++; | |
246 curr_homc++; | |
247 } | |
248 | |
249 curr_hets = mid; | |
250 curr_homr = (rare_copies - mid) / 2; | |
251 curr_homc = genotypes - curr_hets - curr_homr; | |
252 for (curr_hets = mid; curr_hets <= rare_copies - 2; curr_hets += 2) | |
253 { | |
254 het_probs[curr_hets + 2] = het_probs[curr_hets] * 4.0 * curr_homr * curr_homc /((curr_hets + 2.0) * (curr_hets + 1.0)); | |
255 sum += het_probs[curr_hets + 2]; | |
256 | |
257 /* add 2 heterozygotes for next iteration -> subtract one rare, one common homozygote */ | |
258 curr_homr--; | |
259 curr_homc--; | |
260 } | |
261 int i; | |
262 for (i = 0; i <= rare_copies; i++) het_probs[i] /= sum; | |
263 | |
264 /* p-value calculation for p_hwe */ | |
265 double p_hwe = 0.0; | |
266 for (i = 0; i <= rare_copies; i++) | |
267 { | |
268 if (het_probs[i] > het_probs[obs_hets]) | |
269 continue; | |
270 p_hwe += het_probs[i]; | |
271 } | |
272 | |
273 p_hwe = p_hwe > 1.0 ? 1.0 : p_hwe; | |
274 free(het_probs); | |
275 return p_hwe; | |
276 | |
277 } | |
278 | |
279 | |
280 static void _bcf1_set_ref(bcf1_t *b, int idp) | |
281 { | |
282 kstring_t s; | |
283 int old_n_gi = b->n_gi; | |
284 s.m = b->m_str; s.l = b->l_str - 1; s.s = b->str; | |
285 kputs(":GT", &s); kputc('\0', &s); | |
286 b->m_str = s.m; b->l_str = s.l; b->str = s.s; | |
287 bcf_sync(b); | |
288 | |
289 // Call GTs | |
290 int isample, an = 0; | |
291 for (isample = 0; isample < b->n_smpl; isample++) | |
292 { | |
293 if ( idp>=0 && ((uint16_t*)b->gi[idp].data)[isample]==0 ) | |
294 ((uint8_t*)b->gi[old_n_gi].data)[isample] = 1<<7; | |
295 else | |
296 { | |
297 ((uint8_t*)b->gi[old_n_gi].data)[isample] = 0; | |
298 an += b->ploidy ? b->ploidy[isample] : 2; | |
299 } | |
300 } | |
301 bcf_fit_alt(b,1); | |
302 b->qual = 999; | |
303 | |
304 // Prepare BCF for output: ref, alt, filter, info, format | |
305 memset(&s, 0, sizeof(kstring_t)); kputc('\0', &s); | |
306 kputs(b->ref, &s); kputc('\0', &s); | |
307 kputs(b->alt, &s); kputc('\0', &s); kputc('\0', &s); | |
308 { | |
309 ksprintf(&s, "AN=%d;", an); | |
310 kputs(b->info, &s); | |
311 anno16_t a; | |
312 int has_I16 = test16(b, &a) >= 0? 1 : 0; | |
313 if (has_I16 ) | |
314 { | |
315 if ( a.is_tested) ksprintf(&s, ";PV4=%.2g,%.2g,%.2g,%.2g", a.p[0], a.p[1], a.p[2], a.p[3]); | |
316 ksprintf(&s, ";DP4=%d,%d,%d,%d;MQ=%d", a.d[0], a.d[1], a.d[2], a.d[3], a.mq); | |
317 } | |
318 kputc('\0', &s); | |
319 rm_info(&s, "I16="); | |
320 rm_info(&s, "QS="); | |
321 } | |
322 kputs(b->fmt, &s); kputc('\0', &s); | |
323 free(b->str); | |
324 b->m_str = s.m; b->l_str = s.l; b->str = s.s; | |
325 bcf_sync(b); | |
326 } | |
327 | |
328 int call_multiallelic_gt(bcf1_t *b, bcf_p1aux_t *ma, double threshold, int var_only) | |
329 { | |
330 int nals = 1; | |
331 char *p; | |
332 for (p=b->alt; *p; p++) | |
333 { | |
334 if ( *p=='X' || p[0]=='.' ) break; | |
335 if ( p[0]==',' ) nals++; | |
336 } | |
337 if ( b->alt[0] && !*p ) nals++; | |
338 | |
339 if ( nals>4 ) | |
340 { | |
341 if ( *b->ref=='N' ) return 0; | |
342 fprintf(stderr,"Not ready for this, more than 4 alleles at %d: %s, %s\n", b->pos+1, b->ref,b->alt); | |
343 exit(1); | |
344 } | |
345 | |
346 // find PL, DV and DP FORMAT indexes | |
347 uint8_t *pl = NULL; | |
348 int i, npl = 0, idp = -1, idv = -1; | |
349 for (i = 0; i < b->n_gi; ++i) | |
350 { | |
351 if (b->gi[i].fmt == bcf_str2int("PL", 2)) | |
352 { | |
353 pl = (uint8_t*)b->gi[i].data; | |
354 npl = b->gi[i].len; | |
355 } | |
356 else if (b->gi[i].fmt == bcf_str2int("DP", 2)) idp=i; | |
357 else if (b->gi[i].fmt == bcf_str2int("DV", 2)) idv=i; | |
358 } | |
359 if ( nals==1 ) | |
360 { | |
361 if ( !var_only ) _bcf1_set_ref(b, idp); | |
362 return 1; | |
363 } | |
364 if ( !pl ) return -1; | |
365 | |
366 assert(ma->q2p[0] == 1); | |
367 | |
368 // Init P(D|G) | |
369 int npdg = nals*(nals+1)/2; | |
370 double *pdg,*_pdg; | |
371 _pdg = pdg = malloc(sizeof(double)*ma->n*npdg); | |
372 for (i=0; i<ma->n; i++) | |
373 { | |
374 int j; | |
375 double sum = 0; | |
376 for (j=0; j<npdg; j++) | |
377 { | |
378 //_pdg[j] = pow(10,-0.1*pl[j]); | |
379 _pdg[j] = ma->q2p[pl[j]]; | |
380 sum += _pdg[j]; | |
381 } | |
382 if ( sum ) | |
383 for (j=0; j<npdg; j++) _pdg[j] /= sum; | |
384 _pdg += npdg; | |
385 pl += npl; | |
386 } | |
387 | |
388 if ((p = strstr(b->info, "QS=")) == 0) { fprintf(stderr,"INFO/QS is required with -m, exiting\n"); exit(1); } | |
389 double qsum[4]; | |
390 if ( sscanf(p+3,"%lf,%lf,%lf,%lf",&qsum[0],&qsum[1],&qsum[2],&qsum[3])!=4 ) { fprintf(stderr,"Could not parse %s\n",p); exit(1); } | |
391 | |
392 | |
393 // Calculate the most likely combination of alleles, remembering the most and second most likely set | |
394 int ia,ib,ic, max_als=0, max_als2=0; | |
395 double ref_lk = 0, max_lk = INT_MIN, max_lk2 = INT_MIN, lk_sum = INT_MIN, lk_sums[3]; | |
396 for (ia=0; ia<nals; ia++) | |
397 { | |
398 double lk_tot = 0; | |
399 int iaa = (ia+1)*(ia+2)/2-1; | |
400 int isample; | |
401 for (isample=0; isample<ma->n; isample++) | |
402 { | |
403 double *p = pdg + isample*npdg; | |
404 // assert( log(p[iaa]) <= 0 ); | |
405 lk_tot += log(p[iaa]); | |
406 } | |
407 if ( ia==0 ) ref_lk = lk_tot; | |
408 if ( max_lk<lk_tot ) { max_lk2 = max_lk; max_als2 = max_als; max_lk = lk_tot; max_als = 1<<ia; } | |
409 else if ( max_lk2<lk_tot ) { max_lk2 = lk_tot; max_als2 = 1<<ia; } | |
410 lk_sum = lk_tot>lk_sum ? lk_tot + log(1+exp(lk_sum-lk_tot)) : lk_sum + log(1+exp(lk_tot-lk_sum)); | |
411 } | |
412 lk_sums[0] = lk_sum; | |
413 if ( nals>1 ) | |
414 { | |
415 for (ia=0; ia<nals; ia++) | |
416 { | |
417 if ( qsum[ia]==0 ) continue; | |
418 int iaa = (ia+1)*(ia+2)/2-1; | |
419 for (ib=0; ib<ia; ib++) | |
420 { | |
421 if ( qsum[ib]==0 ) continue; | |
422 double lk_tot = 0; | |
423 double fa = qsum[ia]/(qsum[ia]+qsum[ib]); | |
424 double fb = qsum[ib]/(qsum[ia]+qsum[ib]); | |
425 double fab = 2*fa*fb; fa *= fa; fb *= fb; | |
426 int isample, ibb = (ib+1)*(ib+2)/2-1, iab = iaa - ia + ib; | |
427 for (isample=0; isample<ma->n; isample++) | |
428 { | |
429 double *p = pdg + isample*npdg; | |
430 //assert( log(fa*p[iaa] + fb*p[ibb] + fab*p[iab]) <= 0 ); | |
431 if ( b->ploidy && b->ploidy[isample]==1 ) | |
432 lk_tot += log(fa*p[iaa] + fb*p[ibb]); | |
433 else | |
434 lk_tot += log(fa*p[iaa] + fb*p[ibb] + fab*p[iab]); | |
435 } | |
436 if ( max_lk<lk_tot ) { max_lk2 = max_lk; max_als2 = max_als; max_lk = lk_tot; max_als = 1<<ia|1<<ib; } | |
437 else if ( max_lk2<lk_tot ) { max_lk2 = lk_tot; max_als2 = 1<<ia|1<<ib; } | |
438 lk_sum = lk_tot>lk_sum ? lk_tot + log(1+exp(lk_sum-lk_tot)) : lk_sum + log(1+exp(lk_tot-lk_sum)); | |
439 } | |
440 } | |
441 lk_sums[1] = lk_sum; | |
442 } | |
443 if ( nals>2 ) | |
444 { | |
445 for (ia=0; ia<nals; ia++) | |
446 { | |
447 if ( qsum[ia]==0 ) continue; | |
448 int iaa = (ia+1)*(ia+2)/2-1; | |
449 for (ib=0; ib<ia; ib++) | |
450 { | |
451 if ( qsum[ib]==0 ) continue; | |
452 int ibb = (ib+1)*(ib+2)/2-1; | |
453 int iab = iaa - ia + ib; | |
454 for (ic=0; ic<ib; ic++) | |
455 { | |
456 if ( qsum[ic]==0 ) continue; | |
457 double lk_tot = 0; | |
458 double fa = qsum[ia]/(qsum[ia]+qsum[ib]+qsum[ic]); | |
459 double fb = qsum[ib]/(qsum[ia]+qsum[ib]+qsum[ic]); | |
460 double fc = qsum[ic]/(qsum[ia]+qsum[ib]+qsum[ic]); | |
461 double fab = 2*fa*fb, fac = 2*fa*fc, fbc = 2*fb*fc; fa *= fa; fb *= fb; fc *= fc; | |
462 int isample, icc = (ic+1)*(ic+2)/2-1; | |
463 int iac = iaa - ia + ic, ibc = ibb - ib + ic; | |
464 for (isample=0; isample<ma->n; isample++) | |
465 { | |
466 double *p = pdg + isample*npdg; | |
467 //assert( log(fa*p[iaa] + fb*p[ibb] + fc*p[icc] + fab*p[iab] + fac*p[iac] + fbc*p[ibc]) <= 0 ); | |
468 if ( b->ploidy && b->ploidy[isample]==1 ) | |
469 lk_tot += log(fa*p[iaa] + fb*p[ibb] + fc*p[icc]); | |
470 else | |
471 lk_tot += log(fa*p[iaa] + fb*p[ibb] + fc*p[icc] + fab*p[iab] + fac*p[iac] + fbc*p[ibc]); | |
472 } | |
473 if ( max_lk<lk_tot ) { max_lk2 = max_lk; max_als2 = max_als; max_lk = lk_tot; max_als = 1<<ia|1<<ib|1<<ic; } | |
474 else if ( max_lk2<lk_tot ) { max_lk2 = lk_tot; max_als2 = 1<<ia|1<<ib|1<<ic; } | |
475 lk_sum = lk_tot>lk_sum ? lk_tot + log(1+exp(lk_sum-lk_tot)) : lk_sum + log(1+exp(lk_tot-lk_sum)); | |
476 } | |
477 } | |
478 } | |
479 lk_sums[2] = lk_sum; | |
480 } | |
481 | |
482 // Should we add another allele, does it increase the likelihood significantly? | |
483 int n1=0, n2=0; | |
484 for (i=0; i<nals; i++) if ( max_als&1<<i) n1++; | |
485 for (i=0; i<nals; i++) if ( max_als2&1<<i) n2++; | |
486 if ( n2<n1 && kf_gammap(1,2.0*(max_lk-max_lk2))<threshold ) | |
487 { | |
488 // the threshold not exceeded, use the second most likely set with fewer alleles | |
489 max_lk = max_lk2; | |
490 max_als = max_als2; | |
491 n1 = n2; | |
492 } | |
493 lk_sum = lk_sums[n1-1]; | |
494 | |
495 // Get the BCF record ready for GT and GQ | |
496 kstring_t s; | |
497 int old_n_gi = b->n_gi; | |
498 s.m = b->m_str; s.l = b->l_str - 1; s.s = b->str; | |
499 kputs(":GT:GQ", &s); kputc('\0', &s); | |
500 b->m_str = s.m; b->l_str = s.l; b->str = s.s; | |
501 bcf_sync(b); | |
502 | |
503 // Call GTs | |
504 int isample, gts=0, ac[4] = {0,0,0,0}; | |
505 int nRR = 0, nAA = 0, nRA = 0, max_dv = 0; | |
506 for (isample = 0; isample < b->n_smpl; isample++) | |
507 { | |
508 int ploidy = b->ploidy ? b->ploidy[isample] : 2; | |
509 double *p = pdg + isample*npdg; | |
510 int ia, als = 0; | |
511 double lk = 0, lk_s = 0; | |
512 for (ia=0; ia<nals; ia++) | |
513 { | |
514 if ( !(max_als&1<<ia) ) continue; | |
515 int iaa = (ia+1)*(ia+2)/2-1; | |
516 double _lk = p[iaa]*qsum[ia]*qsum[ia]; | |
517 if ( _lk > lk ) { lk = _lk; als = ia<<3 | ia; } | |
518 lk_s += _lk; | |
519 } | |
520 if ( ploidy==2 ) | |
521 { | |
522 for (ia=0; ia<nals; ia++) | |
523 { | |
524 if ( !(max_als&1<<ia) ) continue; | |
525 int iaa = (ia+1)*(ia+2)/2-1; | |
526 for (ib=0; ib<ia; ib++) | |
527 { | |
528 if ( !(max_als&1<<ib) ) continue; | |
529 int iab = iaa - ia + ib; | |
530 double _lk = 2*qsum[ia]*qsum[ib]*p[iab]; | |
531 if ( _lk > lk ) { lk = _lk; als = ib<<3 | ia; } | |
532 lk_s += _lk; | |
533 } | |
534 } | |
535 } | |
536 lk = -log(1-lk/lk_s)/0.2302585; | |
537 int dp = 0; | |
538 if ( idp>=0 && (dp=((uint16_t*)b->gi[idp].data)[isample])==0 ) | |
539 { | |
540 // no coverage | |
541 ((uint8_t*)b->gi[old_n_gi].data)[isample] = 1<<7; | |
542 ((uint8_t*)b->gi[old_n_gi+1].data)[isample] = 0; | |
543 continue; | |
544 } | |
545 if ( lk>99 ) lk = 99; | |
546 ((uint8_t*)b->gi[old_n_gi].data)[isample] = als; | |
547 ((uint8_t*)b->gi[old_n_gi+1].data)[isample] = (int)lk; | |
548 | |
549 // For MDV annotation | |
550 int dv; | |
551 if ( als && idv>=0 && (dv=((uint16_t*)b->gi[idv].data)[isample]) ) | |
552 { | |
553 if ( max_dv < dv ) max_dv = dv; | |
554 } | |
555 | |
556 // For HWE annotation; multiple ALT alleles treated as one | |
557 if ( !als ) nRR++; | |
558 else if ( !(als>>3&7) || !(als&7) ) nRA++; | |
559 else nAA++; | |
560 | |
561 gts |= 1<<(als>>3&7) | 1<<(als&7); | |
562 ac[ als>>3&7 ]++; | |
563 ac[ als&7 ]++; | |
564 } | |
565 free(pdg); | |
566 bcf_fit_alt(b,max_als); | |
567 | |
568 // The VCF spec is ambiguous about QUAL: is it the probability of anything else | |
569 // (that is QUAL(non-ref) = P(ref)+P(any non-ref other than ALT)) or is it | |
570 // QUAL(non-ref)=P(ref) and QUAL(ref)=1-P(ref)? Assuming the latter. | |
571 b->qual = gts>1 ? -4.343*(ref_lk - lk_sum) : -4.343*log(1-exp(ref_lk - lk_sum)); | |
572 if ( b->qual>999 ) b->qual = 999; | |
573 | |
574 // Prepare BCF for output: ref, alt, filter, info, format | |
575 memset(&s, 0, sizeof(kstring_t)); kputc('\0', &s); | |
576 kputs(b->ref, &s); kputc('\0', &s); | |
577 kputs(b->alt, &s); kputc('\0', &s); kputc('\0', &s); | |
578 { | |
579 int an=0, nalts=0; | |
580 for (i=0; i<nals; i++) | |
581 { | |
582 an += ac[i]; | |
583 if ( i>0 && ac[i] ) nalts++; | |
584 } | |
585 ksprintf(&s, "AN=%d;", an); | |
586 if ( nalts ) | |
587 { | |
588 kputs("AC=", &s); | |
589 for (i=1; i<nals; i++) | |
590 { | |
591 if ( !(gts&1<<i) ) continue; | |
592 nalts--; | |
593 ksprintf(&s,"%d", ac[i]); | |
594 if ( nalts>0 ) kputc(',', &s); | |
595 } | |
596 kputc(';', &s); | |
597 } | |
598 kputs(b->info, &s); | |
599 anno16_t a; | |
600 int has_I16 = test16(b, &a) >= 0? 1 : 0; | |
601 if (has_I16 ) | |
602 { | |
603 if ( a.is_tested) ksprintf(&s, ";PV4=%.2g,%.2g,%.2g,%.2g", a.p[0], a.p[1], a.p[2], a.p[3]); | |
604 ksprintf(&s, ";DP4=%d,%d,%d,%d;MQ=%d", a.d[0], a.d[1], a.d[2], a.d[3], a.mq); | |
605 ksprintf(&s, ";QBD=%e", b->qual/(a.d[0] + a.d[1] + a.d[2] + a.d[3])); | |
606 if ( max_dv ) ksprintf(&s, ";MDV=%d", max_dv); | |
607 } | |
608 if ( nAA+nRA ) | |
609 { | |
610 double hwe = calc_hwe(nAA, nRR, nRA); | |
611 ksprintf(&s, ";HWE=%e", hwe); | |
612 } | |
613 kputc('\0', &s); | |
614 rm_info(&s, "I16="); | |
615 rm_info(&s, "QS="); | |
616 } | |
617 kputs(b->fmt, &s); kputc('\0', &s); | |
618 free(b->str); | |
619 b->m_str = s.m; b->l_str = s.l; b->str = s.s; | |
620 bcf_sync(b); | |
621 | |
622 return gts; | |
623 } | |
624 | |
625 static int cal_pdg(const bcf1_t *b, bcf_p1aux_t *ma) | |
626 { | |
627 int i, j; | |
628 long *p, tmp; | |
629 p = alloca(b->n_alleles * sizeof(long)); | |
630 memset(p, 0, sizeof(long) * b->n_alleles); | |
631 for (j = 0; j < ma->n; ++j) { | |
632 const uint8_t *pi = ma->PL + j * ma->PL_len; | |
633 double *pdg = ma->pdg + j * 3; | |
634 pdg[0] = ma->q2p[pi[2]]; pdg[1] = ma->q2p[pi[1]]; pdg[2] = ma->q2p[pi[0]]; | |
635 for (i = 0; i < b->n_alleles; ++i) | |
636 p[i] += (int)pi[(i+1)*(i+2)/2-1]; | |
637 } | |
638 for (i = 0; i < b->n_alleles; ++i) p[i] = p[i]<<4 | i; | |
639 for (i = 1; i < b->n_alleles; ++i) // insertion sort | |
640 for (j = i; j > 0 && p[j] < p[j-1]; --j) | |
641 tmp = p[j], p[j] = p[j-1], p[j-1] = tmp; | |
642 for (i = b->n_alleles - 1; i >= 0; --i) | |
643 if ((p[i]&0xf) == 0) break; | |
644 return i; | |
645 } | |
646 | |
647 | |
648 int bcf_p1_call_gt(const bcf_p1aux_t *ma, double f0, int k) | |
649 { | |
650 double sum, g[3]; | |
651 double max, f3[3], *pdg = ma->pdg + k * 3; | |
652 int q, i, max_i, ploidy; | |
653 ploidy = ma->ploidy? ma->ploidy[k] : 2; | |
654 if (ploidy == 2) { | |
655 f3[0] = (1.-f0)*(1.-f0); f3[1] = 2.*f0*(1.-f0); f3[2] = f0*f0; | |
656 } else { | |
657 f3[0] = 1. - f0; f3[1] = 0; f3[2] = f0; | |
658 } | |
659 for (i = 0, sum = 0.; i < 3; ++i) | |
660 sum += (g[i] = pdg[i] * f3[i]); | |
661 for (i = 0, max = -1., max_i = 0; i < 3; ++i) { | |
662 g[i] /= sum; | |
663 if (g[i] > max) max = g[i], max_i = i; | |
664 } | |
665 max = 1. - max; | |
666 if (max < 1e-308) max = 1e-308; | |
667 q = (int)(-4.343 * log(max) + .499); | |
668 if (q > 99) q = 99; | |
669 return q<<2|max_i; | |
670 } | |
671 | |
672 #define TINY 1e-20 | |
673 | |
674 static void mc_cal_y_core(bcf_p1aux_t *ma, int beg) | |
675 { | |
676 double *z[2], *tmp, *pdg; | |
677 int _j, last_min, last_max; | |
678 assert(beg == 0 || ma->M == ma->n*2); | |
679 z[0] = ma->z; | |
680 z[1] = ma->zswap; | |
681 pdg = ma->pdg; | |
682 memset(z[0], 0, sizeof(double) * (ma->M + 1)); | |
683 memset(z[1], 0, sizeof(double) * (ma->M + 1)); | |
684 z[0][0] = 1.; | |
685 last_min = last_max = 0; | |
686 ma->t = 0.; | |
687 if (ma->M == ma->n * 2) { | |
688 int M = 0; | |
689 for (_j = beg; _j < ma->n; ++_j) { | |
690 int k, j = _j - beg, _min = last_min, _max = last_max, M0; | |
691 double p[3], sum; | |
692 M0 = M; M += 2; | |
693 pdg = ma->pdg + _j * 3; | |
694 p[0] = pdg[0]; p[1] = 2. * pdg[1]; p[2] = pdg[2]; | |
695 for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.; | |
696 for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.; | |
697 _max += 2; | |
698 if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k]; | |
699 if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1]; | |
700 for (k = _min < 2? 2 : _min; k <= _max; ++k) | |
701 z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2]; | |
702 for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; | |
703 ma->t += log(sum / (M * (M - 1.))); | |
704 for (k = _min; k <= _max; ++k) z[1][k] /= sum; | |
705 if (_min >= 1) z[1][_min-1] = 0.; | |
706 if (_min >= 2) z[1][_min-2] = 0.; | |
707 if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.; | |
708 if (_j == ma->n1 - 1) { // set pop1; ma->n1==-1 when unset | |
709 ma->t1 = ma->t; | |
710 memcpy(ma->z1, z[1], sizeof(double) * (ma->n1 * 2 + 1)); | |
711 } | |
712 tmp = z[0]; z[0] = z[1]; z[1] = tmp; | |
713 last_min = _min; last_max = _max; | |
714 } | |
715 //for (_j = 0; _j < last_min; ++_j) z[0][_j] = 0.; // TODO: are these necessary? | |
716 //for (_j = last_max + 1; _j < ma->M; ++_j) z[0][_j] = 0.; | |
717 } else { // this block is very similar to the block above; these two might be merged in future | |
718 int j, M = 0; | |
719 for (j = 0; j < ma->n; ++j) { | |
720 int k, M0, _min = last_min, _max = last_max; | |
721 double p[3], sum; | |
722 pdg = ma->pdg + j * 3; | |
723 for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.; | |
724 for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.; | |
725 M0 = M; | |
726 M += ma->ploidy[j]; | |
727 if (ma->ploidy[j] == 1) { | |
728 p[0] = pdg[0]; p[1] = pdg[2]; | |
729 _max++; | |
730 if (_min == 0) k = 0, z[1][k] = (M0+1-k) * p[0] * z[0][k]; | |
731 for (k = _min < 1? 1 : _min; k <= _max; ++k) | |
732 z[1][k] = (M0+1-k) * p[0] * z[0][k] + k * p[1] * z[0][k-1]; | |
733 for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; | |
734 ma->t += log(sum / M); | |
735 for (k = _min; k <= _max; ++k) z[1][k] /= sum; | |
736 if (_min >= 1) z[1][_min-1] = 0.; | |
737 if (j < ma->n - 1) z[1][_max+1] = 0.; | |
738 } else if (ma->ploidy[j] == 2) { | |
739 p[0] = pdg[0]; p[1] = 2 * pdg[1]; p[2] = pdg[2]; | |
740 _max += 2; | |
741 if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k]; | |
742 if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1]; | |
743 for (k = _min < 2? 2 : _min; k <= _max; ++k) | |
744 z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2]; | |
745 for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; | |
746 ma->t += log(sum / (M * (M - 1.))); | |
747 for (k = _min; k <= _max; ++k) z[1][k] /= sum; | |
748 if (_min >= 1) z[1][_min-1] = 0.; | |
749 if (_min >= 2) z[1][_min-2] = 0.; | |
750 if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.; | |
751 } | |
752 tmp = z[0]; z[0] = z[1]; z[1] = tmp; | |
753 last_min = _min; last_max = _max; | |
754 } | |
755 } | |
756 if (z[0] != ma->z) memcpy(ma->z, z[0], sizeof(double) * (ma->M + 1)); | |
757 if (bcf_p1_fp_lk) | |
758 gzwrite(bcf_p1_fp_lk, ma->z, sizeof(double) * (ma->M + 1)); | |
759 } | |
760 | |
761 static void mc_cal_y(bcf_p1aux_t *ma) | |
762 { | |
763 if (ma->n1 > 0 && ma->n1 < ma->n && ma->M == ma->n * 2) { // NB: ma->n1 is ineffective when there are haploid samples | |
764 int k; | |
765 long double x; | |
766 memset(ma->z1, 0, sizeof(double) * (2 * ma->n1 + 1)); | |
767 memset(ma->z2, 0, sizeof(double) * (2 * (ma->n - ma->n1) + 1)); | |
768 ma->t1 = ma->t2 = 0.; | |
769 mc_cal_y_core(ma, ma->n1); | |
770 ma->t2 = ma->t; | |
771 memcpy(ma->z2, ma->z, sizeof(double) * (2 * (ma->n - ma->n1) + 1)); | |
772 mc_cal_y_core(ma, 0); | |
773 // rescale z | |
774 x = expl(ma->t - (ma->t1 + ma->t2)); | |
775 for (k = 0; k <= ma->M; ++k) ma->z[k] *= x; | |
776 } else mc_cal_y_core(ma, 0); | |
777 } | |
778 | |
779 #define CONTRAST_TINY 1e-30 | |
780 | |
781 extern double kf_gammaq(double s, double z); // incomplete gamma function for chi^2 test | |
782 | |
783 static inline double chi2_test(int a, int b, int c, int d) | |
784 { | |
785 double x, z; | |
786 x = (double)(a+b) * (c+d) * (b+d) * (a+c); | |
787 if (x == 0.) return 1; | |
788 z = a * d - b * c; | |
789 return kf_gammaq(.5, .5 * z * z * (a+b+c+d) / x); | |
790 } | |
791 | |
792 // chi2=(a+b+c+d)(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)] | |
793 static inline double contrast2_aux(const bcf_p1aux_t *p1, double sum, int k1, int k2, double x[3]) | |
794 { | |
795 double p = p1->phi[k1+k2] * p1->z1[k1] * p1->z2[k2] / sum * p1->hg[k1][k2]; | |
796 int n1 = p1->n1, n2 = p1->n - p1->n1; | |
797 if (p < CONTRAST_TINY) return -1; | |
798 if (.5*k1/n1 < .5*k2/n2) x[1] += p; | |
799 else if (.5*k1/n1 > .5*k2/n2) x[2] += p; | |
800 else x[0] += p; | |
801 return p * chi2_test(k1, k2, (n1<<1) - k1, (n2<<1) - k2); | |
802 } | |
803 | |
804 static double contrast2(bcf_p1aux_t *p1, double ret[3]) | |
805 { | |
806 int k, k1, k2, k10, k20, n1, n2; | |
807 double sum; | |
808 // get n1 and n2 | |
809 n1 = p1->n1; n2 = p1->n - p1->n1; | |
810 if (n1 <= 0 || n2 <= 0) return 0.; | |
811 if (p1->hg == 0) { // initialize the hypergeometric distribution | |
812 /* NB: the hg matrix may take a lot of memory when there are many samples. There is a way | |
813 to avoid precomputing this matrix, but it is slower and quite intricate. The following | |
814 computation in this block can be accelerated with a similar strategy, but perhaps this | |
815 is not a serious concern for now. */ | |
816 double tmp = lgamma(2*(n1+n2)+1) - (lgamma(2*n1+1) + lgamma(2*n2+1)); | |
817 p1->hg = calloc(2*n1+1, sizeof(void*)); | |
818 for (k1 = 0; k1 <= 2*n1; ++k1) { | |
819 p1->hg[k1] = calloc(2*n2+1, sizeof(double)); | |
820 for (k2 = 0; k2 <= 2*n2; ++k2) | |
821 p1->hg[k1][k2] = exp(lgamma(k1+k2+1) + lgamma(p1->M-k1-k2+1) - (lgamma(k1+1) + lgamma(k2+1) + lgamma(2*n1-k1+1) + lgamma(2*n2-k2+1) + tmp)); | |
822 } | |
823 } | |
824 { // compute | |
825 long double suml = 0; | |
826 for (k = 0; k <= p1->M; ++k) suml += p1->phi[k] * p1->z[k]; | |
827 sum = suml; | |
828 } | |
829 { // get the max k1 and k2 | |
830 double max; | |
831 int max_k; | |
832 for (k = 0, max = 0, max_k = -1; k <= 2*n1; ++k) { | |
833 double x = p1->phi1[k] * p1->z1[k]; | |
834 if (x > max) max = x, max_k = k; | |
835 } | |
836 k10 = max_k; | |
837 for (k = 0, max = 0, max_k = -1; k <= 2*n2; ++k) { | |
838 double x = p1->phi2[k] * p1->z2[k]; | |
839 if (x > max) max = x, max_k = k; | |
840 } | |
841 k20 = max_k; | |
842 } | |
843 { // We can do the following with one nested loop, but that is an O(N^2) thing. The following code block is much faster for large N. | |
844 double x[3], y; | |
845 long double z = 0., L[2]; | |
846 x[0] = x[1] = x[2] = 0; L[0] = L[1] = 0; | |
847 for (k1 = k10; k1 >= 0; --k1) { | |
848 for (k2 = k20; k2 >= 0; --k2) { | |
849 if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break; | |
850 else z += y; | |
851 } | |
852 for (k2 = k20 + 1; k2 <= 2*n2; ++k2) { | |
853 if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break; | |
854 else z += y; | |
855 } | |
856 } | |
857 ret[0] = x[0]; ret[1] = x[1]; ret[2] = x[2]; | |
858 x[0] = x[1] = x[2] = 0; | |
859 for (k1 = k10 + 1; k1 <= 2*n1; ++k1) { | |
860 for (k2 = k20; k2 >= 0; --k2) { | |
861 if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break; | |
862 else z += y; | |
863 } | |
864 for (k2 = k20 + 1; k2 <= 2*n2; ++k2) { | |
865 if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break; | |
866 else z += y; | |
867 } | |
868 } | |
869 ret[0] += x[0]; ret[1] += x[1]; ret[2] += x[2]; | |
870 if (ret[0] + ret[1] + ret[2] < 0.95) { // in case of bad things happened | |
871 ret[0] = ret[1] = ret[2] = 0; L[0] = L[1] = 0; | |
872 for (k1 = 0, z = 0.; k1 <= 2*n1; ++k1) | |
873 for (k2 = 0; k2 <= 2*n2; ++k2) | |
874 if ((y = contrast2_aux(p1, sum, k1, k2, ret)) >= 0) z += y; | |
875 if (ret[0] + ret[1] + ret[2] < 0.95) // It seems that this may be caused by floating point errors. I do not really understand why... | |
876 z = 1.0, ret[0] = ret[1] = ret[2] = 1./3; | |
877 } | |
878 return (double)z; | |
879 } | |
880 } | |
881 | |
882 static double mc_cal_afs(bcf_p1aux_t *ma, double *p_ref_folded, double *p_var_folded) | |
883 { | |
884 int k; | |
885 long double sum = 0., sum2; | |
886 double *phi = ma->is_indel? ma->phi_indel : ma->phi; | |
887 memset(ma->afs1, 0, sizeof(double) * (ma->M + 1)); | |
888 mc_cal_y(ma); | |
889 // compute AFS | |
890 for (k = 0, sum = 0.; k <= ma->M; ++k) | |
891 sum += (long double)phi[k] * ma->z[k]; | |
892 for (k = 0; k <= ma->M; ++k) { | |
893 ma->afs1[k] = phi[k] * ma->z[k] / sum; | |
894 if (isnan(ma->afs1[k]) || isinf(ma->afs1[k])) return -1.; | |
895 } | |
896 // compute folded variant probability | |
897 for (k = 0, sum = 0.; k <= ma->M; ++k) | |
898 sum += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k]; | |
899 for (k = 1, sum2 = 0.; k < ma->M; ++k) | |
900 sum2 += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k]; | |
901 *p_var_folded = sum2 / sum; | |
902 *p_ref_folded = (phi[k] + phi[ma->M - k]) / 2. * (ma->z[ma->M] + ma->z[0]) / sum; | |
903 // the expected frequency | |
904 for (k = 0, sum = 0.; k <= ma->M; ++k) { | |
905 ma->afs[k] += ma->afs1[k]; | |
906 sum += k * ma->afs1[k]; | |
907 } | |
908 return sum / ma->M; | |
909 } | |
910 | |
911 int bcf_p1_cal(const bcf1_t *b, int do_contrast, bcf_p1aux_t *ma, bcf_p1rst_t *rst) | |
912 { | |
913 int i, k; | |
914 long double sum = 0.; | |
915 ma->is_indel = bcf_is_indel(b); | |
916 rst->perm_rank = -1; | |
917 // set PL and PL_len | |
918 for (i = 0; i < b->n_gi; ++i) { | |
919 if (b->gi[i].fmt == bcf_str2int("PL", 2)) { | |
920 ma->PL = (uint8_t*)b->gi[i].data; | |
921 ma->PL_len = b->gi[i].len; | |
922 break; | |
923 } | |
924 } | |
925 if (i == b->n_gi) return -1; // no PL | |
926 if (b->n_alleles < 2) return -1; // FIXME: find a better solution | |
927 // | |
928 rst->rank0 = cal_pdg(b, ma); | |
929 rst->f_exp = mc_cal_afs(ma, &rst->p_ref_folded, &rst->p_var_folded); | |
930 rst->p_ref = ma->afs1[ma->M]; | |
931 for (k = 0, sum = 0.; k < ma->M; ++k) | |
932 sum += ma->afs1[k]; | |
933 rst->p_var = (double)sum; | |
934 { // compute the allele count | |
935 double max = -1; | |
936 rst->ac = -1; | |
937 for (k = 0; k <= ma->M; ++k) | |
938 if (max < ma->z[k]) max = ma->z[k], rst->ac = k; | |
939 rst->ac = ma->M - rst->ac; | |
940 } | |
941 // calculate f_flat and f_em | |
942 for (k = 0, sum = 0.; k <= ma->M; ++k) | |
943 sum += (long double)ma->z[k]; | |
944 rst->f_flat = 0.; | |
945 for (k = 0; k <= ma->M; ++k) { | |
946 double p = ma->z[k] / sum; | |
947 rst->f_flat += k * p; | |
948 } | |
949 rst->f_flat /= ma->M; | |
950 { // estimate equal-tail credible interval (95% level) | |
951 int l, h; | |
952 double p; | |
953 for (i = 0, p = 0.; i <= ma->M; ++i) | |
954 if (p + ma->afs1[i] > 0.025) break; | |
955 else p += ma->afs1[i]; | |
956 l = i; | |
957 for (i = ma->M, p = 0.; i >= 0; --i) | |
958 if (p + ma->afs1[i] > 0.025) break; | |
959 else p += ma->afs1[i]; | |
960 h = i; | |
961 rst->cil = (double)(ma->M - h) / ma->M; rst->cih = (double)(ma->M - l) / ma->M; | |
962 } | |
963 if (ma->n1 > 0) { // compute LRT | |
964 double max0, max1, max2; | |
965 for (k = 0, max0 = -1; k <= ma->M; ++k) | |
966 if (max0 < ma->z[k]) max0 = ma->z[k]; | |
967 for (k = 0, max1 = -1; k <= ma->n1 * 2; ++k) | |
968 if (max1 < ma->z1[k]) max1 = ma->z1[k]; | |
969 for (k = 0, max2 = -1; k <= ma->M - ma->n1 * 2; ++k) | |
970 if (max2 < ma->z2[k]) max2 = ma->z2[k]; | |
971 rst->lrt = log(max1 * max2 / max0); | |
972 rst->lrt = rst->lrt < 0? 1 : kf_gammaq(.5, rst->lrt); | |
973 } else rst->lrt = -1.0; | |
974 rst->cmp[0] = rst->cmp[1] = rst->cmp[2] = rst->p_chi2 = -1.0; | |
975 if (do_contrast && rst->p_var > 0.5) // skip contrast2() if the locus is a strong non-variant | |
976 rst->p_chi2 = contrast2(ma, rst->cmp); | |
977 return 0; | |
978 } | |
979 | |
980 void bcf_p1_dump_afs(bcf_p1aux_t *ma) | |
981 { | |
982 int k; | |
983 fprintf(stderr, "[afs]"); | |
984 for (k = 0; k <= ma->M; ++k) | |
985 fprintf(stderr, " %d:%.3lf", k, ma->afs[ma->M - k]); | |
986 fprintf(stderr, "\n"); | |
987 memset(ma->afs, 0, sizeof(double) * (ma->M + 1)); | |
988 } |