Mercurial > repos > malex > gait_gm
comparison add_kegg_anno_info.xml @ 1:ec9ee8edb84d draft
Initial upload of 21.6.10 release.
author | malex |
---|---|
date | Fri, 18 Jun 2021 20:23:19 +0000 |
parents | |
children | 2c218a253d56 |
comparison
equal
deleted
inserted
replaced
0:864fc6430432 | 1:ec9ee8edb84d |
---|---|
1 <tool id="secimtools_add_kegg_anno_info" name="Link Name to KEGGID" version="@WRAPPER_VERSION@"> | |
2 <description></description> | |
3 <macros> | |
4 <import>macros.xml</import> | |
5 </macros> | |
6 <expand macro="requirements" /> | |
7 <stdio> | |
8 <exit_code range="1" level="fatal" description="Repeated Unique IDs"/> | |
9 </stdio> | |
10 <command detect_errors="exit_code"><![CDATA[ | |
11 add_kegg_anno_info.py | |
12 -s=$species | |
13 #if $dataSets.whichDataSet == "geneDataset": | |
14 -ga=$dataSets.geneAnnot | |
15 -gid=$dataSets.geneUniqId | |
16 -gn=$dataSets.geneName | |
17 #end if | |
18 #if $dataSets.whichDataSet == "metDataset": | |
19 -ma=$dataSets.metAnnot | |
20 -mid=$dataSets.metUniqId | |
21 -mn=$dataSets.metName | |
22 #end if | |
23 #if $dataSets.whichDataSet == "geneDataset,metDataset": | |
24 -ga=$dataSets.geneAnnot | |
25 -gid=$dataSets.geneUniqId | |
26 -gn=$dataSets.geneName | |
27 -ma=$dataSets.metAnnot | |
28 -mid=$dataSets.metUniqId | |
29 -mn=$dataSets.metName | |
30 #end if | |
31 -go=$geneOutput | |
32 -mo=$metOutput | |
33 ]]></command> | |
34 <inputs> | |
35 <param name="species" type="select" label="Select Species from the list" > | |
36 <option value="hsa">Homo sapiens</option> | |
37 <option value="mmu">Mus musculus</option> | |
38 <option value="rno">Rattus norvegicus</option> | |
39 <option value="dme">Drosophila melanogaster</option> | |
40 <option value="ath">Arabidopsis thaliana</option> | |
41 <option value="sce">Saccharomyces cerevisiae</option> | |
42 <option value="eco">Escherichia coli</option> | |
43 </param> | |
44 <conditional name="dataSets"> | |
45 <param name="whichDataSet" type="select" display="radio" label="Select Annotation Dataset(s)"> | |
46 <option value="geneDataset,metDataset" selected="true">Gene Expression + Metabolomic Annotation Datasets</option> | |
47 <option value="geneDataset">Gene Expression Annotation Dataset</option> | |
48 <option value="metDataset">Metabolomic Annotation Dataset</option> | |
49 <validator type="no_options" message="You must select at least one option." /> | |
50 </param> | |
51 <when value="geneDataset"> | |
52 <param name="geneAnnot" type="data" format="tabular" label="Select the Gene Expression Annotation dataset from your History"/> | |
53 <param name="geneUniqId" type="text" size="30" value="" label="Gene Unique FeatureID" help="Name of the column in your Gene Expression Annotation dataset that contains the unique FeatureIDs."/> | |
54 <param name="geneName" type="text" size="30" value="" label="Gene Symbol" help="Name of the column in your Gene Expression Annotation dataset that contains Gene Symbols to use for linking to KEGGIDs."/> | |
55 </when> | |
56 <when value="metDataset"> | |
57 <param name="metAnnot" type="data" format="tabular" label="Select the Metabolomic Annotation dataset from your History" /> | |
58 <param name="metUniqId" type="text" size="30" value="" label="Metabolite Unique FeatureID" help="Name of the column in your Metabolomic Annotation dataset that contains the unique FeatureIDs."/> | |
59 <param name="metName" type="text" size="30" value="" label="Metabolite Names" help="Name of the column in your Metabolomic Annotation dataset that has metabolite names to use for linking to KEGGIDs."/> | |
60 </when> | |
61 <when value="geneDataset,metDataset"> | |
62 <param name="geneAnnot" type="data" format="tabular" label="Select the Gene Expression Annotation dataset from your History"/> | |
63 <param name="geneUniqId" type="text" size="30" value="" label="Gene Unique FeatureID" help="Name of the column in your Gene Expression Annotation dataset that contains the unique FeatureIDs."/> | |
64 <param name="geneName" type="text" size="30" value="" label="Gene Symbol" help="Name of the Column in your Gene Expression Annotation dataset that contains Gene Symbols to use for linking to KEGGIDs."/> | |
65 <param name="metAnnot" type="data" format="tabular" label="Select the Metabolomic Annotation dataset from your History" /> | |
66 <param name="metUniqId" type="text" size="30" value="" label="Metabolite Unique FeatureID" help="Name of the Column in your Metabolomic Annotation dataset that contains the unique FeatureIDs."/> | |
67 <param name="metName" type="text" size="30" value="" label="Metabolite Names" help="Name of the Column in your Metabolomic Annotation dataset that has metabolite names to use for linking to KEGGIDs."/> | |
68 </when> | |
69 </conditional> | |
70 </inputs> | |
71 <outputs> | |
72 <data format="tabular" name="geneOutput" label="${tool.name} on ${on_string}: Gene to KEGGID link"> | |
73 <filter>(dataSets['whichDataSet'] == 'geneDataset') or (dataSets['whichDataSet'] == 'geneDataset,metDataset')</filter> | |
74 </data> | |
75 <data format="tabular" name="metOutput" label="${tool.name} on ${on_string}: Metabolite to KEGGID link"> | |
76 <filter>(dataSets['whichDataSet'] == 'metDataset') or (dataSets['whichDataSet'] == 'geneDataset,metDataset')</filter> | |
77 </data> | |
78 </outputs> | |
79 <tests> | |
80 <test> | |
81 <param name="species" value="rno"/> | |
82 <param name="geneAnnot" value="ensembl2symbol_annotation_file_01fhl.tsv"/> | |
83 <param name="geneUniqId" value="UniqueID"/> | |
84 <param name="geneName" value="GeneSymbol"/> | |
85 <param name="metAnnot" value="metabolite_annotation_file_01fhl.tsv"/> | |
86 <param name="metUniqId" value="UniqueID"/> | |
87 <param name="metName" value="MetName"/> | |
88 <param name="geneOutput" value="gene_link_kegg_annotation_file_01fhl.tsv"/> | |
89 <param name="metOutput" value="metabolite_link_kegg_annotation_file_01fhl.tsv"/> | |
90 </test> | |
91 </tests> | |
92 <help><![CDATA[ | |
93 | |
94 **Tool Description** | |
95 | |
96 This tool takes an annotation dataset containing metabolite compound names or gene symbols and links them to identifiers in KEGG (KEGGIDs) | |
97 creating either a (a) Gene to KEGGID Link or a (b) Metabolite to KEGGID Link dataset. For gene expression data, the tool is designed to | |
98 take the output from the 'Map ENSEMBLIDs to Gene Symbols' tool as input. If your input dataset contains a Selected column, the tool will | |
99 link GeneSymbols to KEGGIDs where Selected = 'Yes'. Input Files without a Selected column must have a column containing unique FeatureIDs. | |
100 This tool takes an annotation dataset containing unique FeatureIDs, ENSEMBLIDs (for gene expression data) and GeneSymbol/MetaboliteName | |
101 and adds the following columns: 1) Name_in_KEGG, the name found in KEGG, 2) Matched, a column indicating whether a match was found in KEGG, | |
102 3) KEGGID, the KEGG identifier for the Match, 4) Score, a similarity score representing match similarity (caluclated using the python internal | |
103 function SequenceMatcher from difflib (check) and 5) a Tie column to indicate if a gene symbol or metabolite name matched more than one KEGGID. | |
104 | |
105 User-specified metabolite names are linked to KEGGIDs by identifying the best match using the following procedure. Common metabolite prefixes | |
106 are removed (cis-, trans-, d- , l- , (s)-, alpha-, beta-, alpha, beta, alpha-d-, beta-d-, alpha-l-, beta-l-, l-beta-, l-alpha-, d-beta-, d-alpha-). | |
107 If the metabolite name given is an acid, then the name is modified to the conjugate base by replacing “ic acid”, “icacid” or “ic_acid” with “ate”. | |
108 If amino acids are given in 1-letter or 3-letter abbreviations, names are modified to the full amino acid name. The following commonly used lipid | |
109 abbreviations are modified to reflect the full names (SM = sphingomyelin, lysopc = lysophosphatidylcholine, PC = phosphatidylcholine, | |
110 PE = phosphatidylethanolamine and LysoPE = lysophosphatidylethanolamine). Similarly, abbreviations for other commonly assayed metabolites are | |
111 modified to reflect the full names (cit = citrate, orn = ornithine, thyr = thyroxine and boc = butoxycarbonyl). The code allows the addition of | |
112 more synonyms. The user-specified metabolite names are retained in the output dataset for comparisons with the KEGG database. | |
113 | |
114 Each parsed metabolite name is compared to metabolite names in KEGG. The best match in KEGG based on similarity score is returned. The similarity | |
115 score (Score column) is based on the longest contiguous matching subsequence that does not contain 'junk' elements where 'junk' elements are defined | |
116 as duplicates making up more than 1% of a sequence with minimum length of 200 (python SequenceMatcher class from difflib) | |
117 | |
118 Selected = Yes for the match with the highest similarity score. | |
119 | |
120 For metabolite names where the best match is tied with at least one other compound in KEGG, all matches are returned. A tie is determined as follows: | |
121 if the Score is greater than 95% for 2 or more matches in the metabolite name then: | |
122 1) the Tie column = 'Yes' and a warning message will appear | |
123 2) the Selected column is sorted alphabetically on the Name_in_KEGG column. Note that the user-specified FeatureID and MetaboliteName may not be unique in the resulting output dataset. | |
124 | |
125 -------------------------------------------------------------------------------- | |
126 | |
127 **INPUT** | |
128 | |
129 **Annotation File** | |
130 | |
131 +-------------+--------------+-----+ | |
132 | FeatureID | Name | ... | | |
133 +=============+==============+=====+ | |
134 | FeatureID_1 | one | ... | | |
135 +-------------+--------------+-----+ | |
136 | FeatureID_2 | two | ... | | |
137 +-------------+--------------+-----+ | |
138 | FeatureID_3 | three | ... | | |
139 +-------------+--------------+-----+ | |
140 | FeatureID_4 | four | ... | | |
141 +-------------+--------------+-----+ | |
142 | ... | ... | ... | | |
143 +-------------+--------------+-----+ | |
144 | |
145 **NOTE:** This dataset must contain at least two columns, a column of FeatureIDs and a column containing names (e.g. gene symbol or compound names) to use for linking to KEGGIDs. Other columns may be present in the dataset. The user can use a Gene Expression Annotation dataset, a Metabolomic Annotation dataset or both. | |
146 | |
147 **Unique FeatureID** | |
148 | |
149 Name of the column in your gene expression or metabolomic Annotation dataset that contains the Unique FeatureIDs. | |
150 | |
151 **Gene Symbol or Metabolite Names** | |
152 | |
153 Name of the column in your gene expression or metabolomic Annotation dataset with the names to use for matching to KEGGIDs. | |
154 | |
155 -------------------------------------------------------------------------------- | |
156 | |
157 **OUTPUT** | |
158 | |
159 For each input Annotation file, a TSV file containing the following columns is generated: | |
160 | |
161 (1) **unique FeatureID:** column from the Annotation dataset containing the unique FeatureIDs. | |
162 (2) **Name:** column from Annotation dataset used for matching in KEGG. | |
163 (3) **Feature_Type:** column indicating whether matching was for metabolites or genes. | |
164 (4) **Matched:** column indicating whether a match in KEGG was found. Yes/No | |
165 (5) **Name_in_KEGG:** column containing the KEGG name for the match. | |
166 (6) **KEGGID:** column containing the KEGG identifier for the match. | |
167 (7) **Similarity:** value indicating the similarity between the given feature and the match in KEGG. Ranges from 0 to 1. | |
168 (8) **Tie:** in cases where multiple matches are found for a given feature, Tie = yes if the similarity is greater than 95%. | |
169 (9) **Selected:** for features with multiple matches and different similarity scores, the 'Selected' column = yes for the match with the highest similarity score. For features with multiple matches and the same similarity score, the 'Selected' column = yes based on the alphabetical order of the returned match. | |
170 | |
171 | |
172 **Example Metabolite to KEGGID Link Table** | |
173 | |
174 +-------------+------------+--------------+---------+--------------+----------+------------+-----+----------+ | |
175 | FeatureID | Name | Feature_Type | Matched | Name_in_KEGG | KEGG_ID | Similarity | Tie | Selected | | |
176 +=============+============+==============+=========+==============+==========+============+=====+==========+ | |
177 | FeatureID_1 | one | Metabolite | Yes | one* | cpd:... | 1.0 | No | Yes | | |
178 +-------------+------------+--------------+---------+--------------+----------+------------+-----+----------+ | |
179 | FeatureID_2 | two | Metabolite | Yes | two* | cpd:... | 1.0 | No | Yes | | |
180 +-------------+------------+--------------+---------+--------------+----------+------------+-----+----------+ | |
181 | FeatureID_3 | two | Metabolite | Yes | three* | cpd:... | 0.87 | No | No | | |
182 +-------------+------------+--------------+---------+--------------+----------+------------+-----+----------+ | |
183 | FeatureID_4 | four | Metabolite | No | NA | NA | NA | NA | NA | | |
184 +-------------+------------+--------------+---------+--------------+----------+------------+-----+----------+ | |
185 | ... | ... | ... | ... | ... | ... | ... | ... | ... | | |
186 +-------------+------------+--------------+---------+--------------+----------+------------+-----+----------+ | |
187 | |
188 **NOTE:** Warning messages appear in cases of a Tie (greater than 95% similarity). Please check these results carefully. | |
189 | |
190 ]]> | |
191 </help> | |
192 <citations> | |
193 <citation type="bibtex">@ARTICLE{Kirpich17secimtools, | |
194 author = {Alexander S. Kirpich, Miguel Ibarra, Oleksandr Moskalenko, Justin M. Fear, Joseph Gerken, Xinlei Mi, Ali Ashrafi, Alison M. Morse, Lauren M. McIntyre}, | |
195 title = {SECIMTools: A suite of Metabolomics Data Analysis Tools}, | |
196 journal = {BMC Bioinformatics}, | |
197 year = {in press} | |
198 }</citation> | |
199 <citation type="bibtex"> | |
200 @article{garcia2010paintomics, | |
201 title={Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data}, | |
202 author={Garc{\'\i}a-Alcalde, Fernando and Garc{\'\i}a-L{\'o}pez, Federico and Dopazo, Joaqu{\'\i}n and Conesa, Ana}, | |
203 journal={Bioinformatics}, | |
204 volume={27}, | |
205 number={1}, | |
206 pages={137--139}, | |
207 year={2010}, | |
208 publisher={Oxford University Press} | |
209 }</citation> | |
210 <citation>@article{wu2014mygene, | |
211 title={MyGene. info: gene annotation query as a service}, | |
212 author={Wu, Chunlei and Mark, Adam and Su, Andrew I}, | |
213 journal={bioRxiv}, | |
214 pages={009332}, | |
215 year={2014}, | |
216 publisher={Cold Spring Harbor Laboratory} | |
217 }</citation> | |
218 </citations> | |
219 </tool> |