Mercurial > repos > malex > gait_gm
view all_by_all_correlation.xml @ 2:2c218a253d56 draft default tip
"planemo upload for repository https://github.com/secimTools/gait-gm/tree/main/galaxy commit 758394addb95b09e794132a23a1f7e95ba39df0b"
author | malex |
---|---|
date | Thu, 29 Jul 2021 20:48:10 +0000 |
parents | ec9ee8edb84d |
children |
line wrap: on
line source
<tool id="allByAllCorr" name="Metabolite - Gene Correlation" version="@WRAPPER_VERSION@"> <description></description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements" /> <command detect_errors="exit_code"><![CDATA[ all_by_all_correlation.py -g=$geneDataset -gid=$geneId #if $geneAnnotation.useGeneAnnot == "Yes": -ga=$geneAnnotation.geneAnnot -gn=$geneAnnotation.geneAnnotName #end if -m=$metDataset -mid=$metId #if $metAnnotation.useMetAnnot == "Yes": -ma=$metAnnotation.metAnnot -mn=$metAnnotation.metAnnotName #end if -me=$method -t=$threshold -o=$output -c=$corMat -f=$figure ]]></command> <inputs> <param name="geneDataset" type="data" format="tabular" label="Gene Expression Wide Dataset" help="Select the Gene Expression Wide Dataset from your history"/> <param name="geneId" type="text" size="30" value="" label="Unique Gene FeatureID" help="Name of the Column in your Gene Expression Wide Dataset that contains unique identifiers."/> <conditional name="geneAnnotation"> <param name="useGeneAnnot" type="select" label="Use Annotation File?" help="You can choose to input a file containing gene annotation information (e.g. gene names, identifiers, etc.) for labeling output files."> <option value="No">No</option> <option value="Yes">Yes</option> </param> <when value="Yes"> <param name="geneAnnot" type="data" format="tabular" label="Gene Expression Annotation File" help="Select the Gene Expression Annotation File from your history"/> <param name="geneAnnotName" type="text" value="" label="Gene Labels" help="Name of the column in the Gene Expression Annotation File to use for labeling output files."/> </when> <when value="No" /> </conditional> <param name="metDataset" type="data" format="tabular" label="Metabolite Wide Dataset" help="Select the Metabolite Wide Dataset from your history"/> <param name="metId" type="text" size="30" value="" label="Unique Metabolite FeatureID" help="Name of the column in your Metabolite Wide Dataset that contains unique identifiers."/> <conditional name="metAnnotation"> <param name="useMetAnnot" type="select" label="Use Annotation File?" help="You can choose to input a file containing metabolite annotation information (e.g. metabolite names, identifiers, etc.) for labeling output files."> <option value="No">No</option> <option value="Yes">Yes</option> </param> <when value="Yes"> <param name="metAnnot" type="data" format="tabular" label="Metabolite Annotation File" help="Select the Metabolite Annotation File from your history"/> <param name="metAnnotName" type="text" value="" label="Metabolite Labels" help="Name of the column in the Metabolite Annotation File to use for labeling output files"/> </when> <when value="No" /> </conditional> <param name="method" type="select" label="Correlation Method" help="Select a correlation method."> <option value="pearson">Pearson</option> <option value="spearman">Spearman</option> <option value="kendall">Kendall</option> </param> <param name="threshold" type="text" value="0.05" label="P-Value threshold." help="Default: 0.05"/> </inputs> <outputs> <data format="tabular" name="output" label="${tool.name} on ${on_string}: Correlation File"/> <data format="tabular" name="corMat" label="${tool.name} on ${on_string}: Correlation Matrix"/> <data format="pdf" name="figure" label="${tool.name} on ${on_string}: Correlation Figure"/> </outputs> <tests> <test> <param name="geneDataset" value="gene_wide_dataset.tsv"/> <param name="geneId" value="UniqueID"/> <param name="geneAnnot" value="gene_annotation.tsv"/> <param name="geneName" value="GeneName"/> <param name="metDataset" value="metabolite_wide_dataset.tsv"/> <param name="metId" value="UniqueID"/> <param name="metAnnot" value="metabolite_annotation.tsv"/> <param name="metName" value="MetName"/> <output name="output" file="correlation.tsv" compare="diff" lines_diff="10000"/> <output name="corMat" file="correlation_matrix.tsv" compare="diff" lines_diff="10000"/> <output name="figure" file="correlation_figure.pdf" compare="sim_size" delta="1000000"/> </test> </tests> <help><![CDATA[ **Tool Description** The tool performs a correlation analysis between genes (Gene Expression Wide Dataset) and metabolites (Metabolite Wide Dataset) to generate a table of correlation coefficients. P-values for the correlation coefficients are calculated by simulating gene and metabolite datasets 1000 times using the mean and standard deviation of both datasets. The tool outputs 2 TSV files and a PDF figure. The 'correlation file' contains gene-metabolite correlation coefficients with p-values less than the user-specified threshold. The tool also outputs the results in matrix format, the ‘correlation matrix file’. The ‘correlation figure’ is a network representation of the top 500 gene-metabolite correlations based on the absolute value of the correlation coefficients. -------------------------------------------------------------------------------- **Input** (1) **Gene Expression Dataset** A wide formatted dataset containing measurements for each sample (where samples are in columns): +-----------+---------+---------+---------+-----+ | UniqueID | sample1 | sample2 | sample3 | ... | +===========+=========+=========+=========+=====+ | gene_1 | 1.2 | 3.5 | 2.9 | ... | +-----------+---------+---------+---------+-----+ | gene_2 | 1.6 | 3.2 | 3.2 | ... | +-----------+---------+---------+---------+-----+ | gene_3 | 1.4 | 3.0 | 3.1 | ... | +-----------+---------+---------+---------+-----+ | gene_4 | 1.6 | 2.9 | 3.1 | ... | +-----------+---------+---------+---------+-----+ | ... | ... | ... | ... | ... | +-----------+---------+---------+---------+-----+ (2) **Unique Gene FeatureID** Name of the column in your Gene Expression Wide Dataset that contains unique gene identifiers. **NOTE:** This identifier must be the gene symbol. (3) **Metabolomic Wide Dataset** A wide formatted metabolomic dataset that contains measurements for each sample (where samples are in columns): +------------+---------+---------+---------+-----+ | UniqueID | sample1 | sample2 | sample3 | ... | +============+=========+=========+=========+=====+ | met_1 | 10 | 20 | 10 | ... | +------------+---------+---------+---------+-----+ | met_2 | 5 | 22 | 30 | ... | +------------+---------+---------+---------+-----+ | met_3 | 30 | 27 | 2 | ... | +------------+---------+---------+---------+-----+ | met_4 | 32 | 17 | 8 | ... | +------------+---------+---------+---------+-----+ | ... | ... | ... | ... | ... | +------------+---------+---------+---------+-----+ (4) **Unique Metabolite FeatureID** Name of the column in your Metabolite Wide Dataset that contains unique metabolite identifiers. (5) **Annotation Files** The user can provide (optional) Annotation Files for the Gene Expression and/or Metabolite Datasets to label the results for easier readability. The user must provide the name of the column with the desired feature name (e.g. Gene Symbol). +-----------+--------------+-------------+-----+ | UniqueID | ENSEMBL_ID | Gene_Symbol | ... | +===========+==============+=============+=====+ | gene_1 | ENS... | one | ... | +-----------+--------------+-------------+-----+ | gene_2 | ENS... | two | ... | +-----------+--------------+-------------+-----+ | gene_3 | ENS... | three | ... | +-----------+--------------+-------------+-----+ | gene_4 | ENS... | four | ... | +-----------+--------------+-------------+-----+ | ... | ... | ... | ... | +-----------+--------------+-------------+-----+ (6) **Correlation method** Select the correlation coefficient to be computed from the list. Pearson, kendall, or spearman are available. (7) **P-Value threshold** User specified value that limits the data in the resulting 'Correlation File' to only those correlations with P-values less than this value. -------------------------------------------------------------------------------- **Output** The user will obtain three outputs from the Gene - Metabolite Correlation Tool: (1) **Correlation File.** A file sorted by the absolute values of the correlation coefficient and including the P-value. The file contains only the correlation coefficients where the associated P-values is less than a user-specified value (default = 0.05). +--------+------------+-------------+-----------+ | Gene | Metabolite | Correlation | (p-value) | +========+============+=============+===========+ | gene_1 | met_1 | 0.99 | 0.000 | +--------+------------+-------------+-----------+ | gene_2 | met_4 | -0.98 | 0.000 | +--------+------------+-------------+-----------+ | gene_3 | met_5 | 0.96 | 0.001 | +--------+------------+-------------+-----------+ | gene_4 | met_1 | 0.95 | 0.002 | +--------+------------+-------------+-----------+ | ... | ... | ... | ... | +--------+------------+-------------+-----------+ (2) **Correlation Matrix.** Output correlation matrix. +--------+-------+-------+-------+-------+-----+ | Gene | met_1 | met_2 | met_3 | met_4 | ... | +========+=======+=======+=======+=======+=====+ | gene_1 | 0.99 | 0.56 | 0.25 | 0.33 | ... | +--------+-------+-------+-------+-------+-----+ | gene_2 | -0.57 | 0.63 | -0.14 | 0.01 | ... | +--------+-------+-------+-------+-------+-----+ | gene_3 | 0.62 | 0.96 | 0.20 | 0.32 | ... | +--------+-------+-------+-------+-------+-----+ | gene_4 | 0.95 | 0.25 | 0.16 | 0.44 | ... | +--------+-------+-------+-------+-------+-----+ | ... | ... | ... | ... | ... | ... | +--------+-------+-------+-------+-------+-----+ (3) **Correlation Figure.** Network representation of the top 500 gene-metabolite correlations based on the absolute value of the correlation coefficients. Maximum number of correlations in the network is 500. ]]> </help> <citations> <citation type="bibtex">@ARTICLE{Kirpich17secimtools, author = {Alexander S. Kirpich, Miguel Ibarra, Oleksandr Moskalenko, Justin M. Fear, Joseph Gerken, Xinlei Mi, Ali Ashrafi, Alison M. Morse, Lauren M. McIntyre}, title = {SECIMTools: A suite of Metabolomics Data Analysis Tools}, journal = {BMC Bioinformatics}, year = {2018} }</citation> <citation type="bibtex">@article{Mor2021GaitGM, title={GAIT-GM integrative cross-omics analyses reveal cholinergic defects in a C. elegans model of Parkinson's disease}, author={Mor, DE and Huertas, F and Morse, AM and Kaletsky, R and Murphy, CT and Kalia, V and Miller, GW and Moskalenko, O and Conesa, A and McIntyre, LM}, journal={BMC Genomics}, year={submitted}, }</citation> </citations> </tool>