Mercurial > repos > malex > secimtools
diff mahalanobis_distance.xml @ 1:2e7d47c0b027 draft
"planemo upload for repository https://malex@toolshed.g2.bx.psu.edu/repos/malex/secimtools"
author | malex |
---|---|
date | Mon, 08 Mar 2021 22:04:06 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mahalanobis_distance.xml Mon Mar 08 22:04:06 2021 +0000 @@ -0,0 +1,136 @@ +<tool id="secimtools_mahalanobis_distance" name="Penalized Mahalanobis Distance (PMD)" version="@WRAPPER_VERSION@"> + <description>to compare groups</description> + <macros> + <import>macros.xml</import> + </macros> + <expand macro="requirements" /> + <stdio> + <exit_code range="1:" level="warning" description="RuntimeWarning"/> + </stdio> + <command detect_errors="exit_code"><![CDATA[ +mahalanobis_distance.py +--input $input +--design $design +--ID $uniqID +--figure $plot +--distanceToMean $out1 +--distancePairwise $out2 + +#if $group + --group $group +#end if + +#if $levels + --levels $levels +#end if + +#if $p + --per $p +#end if + +#if $order + --order $order +#end if + +#if $penalty + --penalty $penalty +#end if + ]]></command> + <inputs> + <param name="input" type="data" format="tabular" label="Wide Dataset" help="Input your tab-separated wide format dataset. If file not tab separated see TIP below."/> + <param name="design" type="data" format="tabular" label="Design File" help="Input your design file (tab-separated). Note you need a 'sampleID' column. If not tab separated see TIP below."/> + <param name="uniqID" type="text" size="30" value="" label="Unique Feature ID" help="Name of the column in your wide dataset that has unique identifiers.."/> + <param name="group" type="text" size="30" label="Group/Treatment [Optional]" help="Name of the column in your design file that contains group classifications." /> + <param name="order" type="text" size="30" label="Input Run Order Name [Optional]" help="Enter the name of the column containing the order samples were run. Spelling and capitalization must be exact." /> + <param name="levels" type="text" size="30" label="Additional groups to separate by [Optional]" help="Enter additional group(s) name(s) to include. Spelling and capitalization must be exact. If more than one group separate with ','." /> + <param name="p" type="float" value= ".95" size="6" label="Threshold" help="Threshold for standard distribution, specified as a percentile. Default = 0.95." /> + <param name="penalty" type="float" value= "0.5" size="6" label="λ Penalty" help="λ Penalty to use in the distance. The default is λ=0.5." /> + </inputs> + <outputs> + <data format="pdf" name="plot" label="${tool.name} on ${on_string}: plot" /> + <data format="tabular" name="out1" label="${tool.name} on ${on_string}: toMean" /> + <data format="tabular" name="out2" label="${tool.name} on ${on_string}: pairwise" /> + </outputs> + <tests> + <test> + <param name="input" value="ST000006_data.tsv"/> + <param name="design" value="ST000006_design.tsv"/> + <param name="uniqID" value="Retention_Index" /> + <param name="group" value="White_wine_type_and_source" /> + <param name="penalty" value="0.5" /> + <output name="plot" file="ST000006_mahalanobis_distance_figure.pdf" compare="sim_size" delta="10000" /> + <output name="out1" file="ST000006_mahalanobis_distance_to_mean.tsv" /> + <output name="out2" file="ST000006_mahalanobis_distance_pairwise.tsv" /> + </test> + </tests> + <help><![CDATA[ + +@TIP_AND_WARNING@ + +**Tool Description** + +The Penalized Mahalanobis distance (PMD) tool can be used to compare samples within a group and accounts for the correlation structure between metabolites. +In contrast, Standardized Euclidian distance (SED) relies solely on geometric distance and ignores any dependency structures between features. +PMD incorporates the correlation structure inside the distance measurement. + +When correlation structure and dependency between metabolites is ignored, the features inverse variance-covariance matrix simplifies to a diagonal matrix with diagonal values - in this case, MD simplifies to SED. +When the number of features is greater than the number of samples, the inverse of the features variance-covariance matrix does not exist. +This is the case for most -omic data. Here, the inverse is estimated using a regularization method (Archambeau et al. 2004). +The details of the regularization algorithm can be found in Supplementary file 3 in Kirpich et al. 2017. + +Archambeau C, Vrins F, Verleysen M. Flexible and Robust Bayesian Classification by Finite Mixture Models. InESANN 2004 (pp. 75-80). + +**NOTE:** Because of the nature of the tool, groups with less than 3 samples will be discarded from the analysis. + + +**Input** + + - Two input datasets are required. + +@WIDE@ + +**NOTE:** The sample IDs must match the sample IDs in the Design File +(below). Extra columns will automatically be ignored. + +@METADATA@ + +@UNIQID@ + +@GROUP_OPTIONAL@ + + - **Warning:** All groups must contain 3 or more samples. + + +@RUNORDER_OPTIONAL@ + +**Additional groups to separate by [Optional]** + + - Enter additional group(s) name(s) to include. Spelling and capitalization must be exact. If more than one group, separate them with a comma + - **Warning:** All groups must contain 3 or more samples. + + +**Percentile cutoff** + +- The percentile cutoff for standard distributions. The default is 0.95. + +**λ Penalty** + +- λ Penalty to use in the distance. The default is λ=0.5. + +-------------------------------------------------------------------------------- + +**Output** + +The tool outputs three different files: + +(1) a PDF file containing 2D scatter plots and boxplots for the distances + +(2) a TSV file containing distances from the sample to the estimated mean + +(3) a TSV file containing distances from the sample to other samples. + +If the grouping variable is specified by the user, the distances are computed both within the groups and for the entire dataset. + + ]]></help> + <expand macro="citations"/> +</tool>