Mercurial > repos > malex > secimtools
view multiple_testing_adjustment.xml @ 1:2e7d47c0b027 draft
"planemo upload for repository https://malex@toolshed.g2.bx.psu.edu/repos/malex/secimtools"
author | malex |
---|---|
date | Mon, 08 Mar 2021 22:04:06 +0000 |
parents | |
children |
line wrap: on
line source
<tool id="secimtools_multiple_testing_adjustment" name="Multiple Testing Adjustment (MTA)" version="@WRAPPER_VERSION@"> <description>of p-values.</description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements" /> <command><![CDATA[ multiple_testing_adjustment.py --input $input --uniqID $uniqID --pval "$pval" --alpha $alpha --outadjusted $outadjusted --flags $flags ]]></command> <inputs> <param name="input" type="data" format="tabular" label="Wide Dataset" help="Input your tab-separated wide format dataset. If not tab separated see TIP below."/> <param name="uniqID" type="text" size="30" value="" label="Unique Feature ID" help="Name of the column in your Wide Dataset that has unique identifiers.."/> <param name="pval" type="text" size="30" value="" label="p-value column" help="Name of the column in your wide dataset that contains the p-values."/> <param name="alpha" type="float" size="6" value="0.05" label="α" help="Value of α to be used for multiple correction. Default α = 0.05."/> </inputs> <outputs> <data format="tabular" name="outadjusted" label="${tool.name} on ${on_string}: Adjusted pval."/> <data format="tabular" name="flags" label="${tool.name} on ${on_string}: Flags."/> </outputs> <tests> <test> <param name="input" value="ST000006_anova_fixed_with_group_summary.tsv"/> <param name="uniqID" value="Retention_Index" /> <param name="pval" value="prob_greater_than_t_for_diff_Chardonnay, Carneros, CA 2003 (CH01)-Chardonnay, Carneros, CA 2003 (CH02)" /> <param name="alpha" value="0.05" /> <output name="outadjusted" file="ST000006_multiple_testing_adjustment_outadjusted.tsv" /> <output name="flags" file="ST000006_multiple_testing_adjustment_flags.tsv" /> </test> </tests> <help><![CDATA[ @TIP_AND_WARNING@ **Tool Description** The tool is designed to adjust p-values for multiple comparisons using three different methods: (1) The Bonferroni method and two false discovery rate (FDR) methods, (2) the Benjamini-Hochberg method (BH) and (3) the Benjamini-Yekutieli method (BY). The p-value correction can be carried out on p-values generated from the following tools: Analysis of Variance (ANOVA) Fixed Effects Model, Kruskal-Wallis Non-Parametric Test, T-test (Single Group) and T-test (Paired and/or Unpaired) in addition to p-values generated outside of these tools. The user can specify the total type I error α value. More details about the PH and BY methods are available in the papers: Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 289-300. Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of statistics, 1165-1188. ------------------------------------------------------------------------------------------- **Input** - Two input datasets are required. @WIDE@ @UNIQID@ **Name for p-value column** - Name of the column in your Wide Dataset that contains the p-values. **α** - Value of α to be used for multiple correction. Default α = 0.05. ------------------------------------------------------------------------------------------- **Output** The tool produces two TSV files: (1) One TSV that contains the following five columns: a column with unique feature IDs, a column of the original p-values and the last three columns contain the p-values adjusted using the 3 methods described above which are reflected in the column name. (2) The second TSV file contains flags where all significant values are flagged as 1 and non-significant values are flagged as 0. ]]></help> <expand macro="citations"/> </tool>