Mercurial > repos > marie-tremblay-metatoul > asca
comparison ssq.R @ 0:93312041f1d5 draft default tip
planemo upload for repository https://github.com/workflow4metabolomics/ascaw4m commit 7ea9b0f8abc5a60c2c04fd2098788497f14766b6
author | marie-tremblay-metatoul |
---|---|
date | Fri, 21 Sep 2018 05:51:14 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:93312041f1d5 |
---|---|
1 library(lmdme) | |
2 library(MetStaT) | |
3 | |
4 ## Data : attention standardiser au prealable | |
5 data <- read.table("E:/PROJETS/Asca_W4M/Test_Matlab_data.txt", sep="\t", dec=",", header=TRUE, row.names=1) | |
6 design <- read.table("E:/PROJETS/Asca_W4M/Test_Matlab_design.txt", sep="\t", dec=",", header=TRUE) | |
7 design[,1] <- as.factor(design[,1]) | |
8 design[,2] <- as.factor(design[,2]) | |
9 | |
10 ## Verifier noms | |
11 | |
12 | |
13 fit <- lmdme(model=~F1 + F2 + F1:F2, data=data, design=design) | |
14 | |
15 permuted <- permutation(model=~F1*F2, data=data, design=design, NPermutations=100, nCpus=3) | |
16 | |
17 decomposition(fit, decomposition = "pca", scale="none", type="coefficient") | |
18 | |
19 | |
20 | |
21 | |
22 ssq <- function(fit) | |
23 { | |
24 Overall_means <- sum(sum(fitted.values(fit)$'(Intercept)'^2))/sum(sum(data^2)) | |
25 Factors <- c(sum(sum(fitted.values(fit)$'F1'^2))/sum(sum(data^2)), sum(sum(fitted.values(fit)$'F2'^2))/sum(sum(data^2))) | |
26 Interactions <- sum(sum(fitted.values(fit)$'F1:F2'^2))/sum(sum(data^2)) | |
27 Residuals <- 1 - Overall_means - Factors[1] - Factors[2] - Interactions | |
28 | |
29 return(list(Overall_means, Factors, Interactions, Residuals)) | |
30 } | |
31 | |
32 | |
33 par(mfrow=c(2,2)) | |
34 biplot(fit, xlabs="o", mfcol=NULL) | |
35 ##Just the term of interest | |
36 biplot(fit, xlabs="o", term="F1") | |
37 ##In separate graphics | |
38 biplot(fit, xlabs="o", term=c("F1", "F2"), mfcol=c(1,1)) | |
39 ##All terms in the same graphic | |
40 biplot(fit, xlabs="o", mfcol=c(1,3)) | |
41 | |
42 test <-lapply(permuted, FUN = ssq) | |
43 test1 <- matrix(unlist(test), ncol=5, byrow=TRUE) | |
44 test[2:101] | |
45 | |
46 apply(apply(test1, 2, FUN = function(x){x > x[1]})[-1,], 2 , sum) / (length(test)-1) | |
47 | |
48 score_moyen <- data.frame(fit@components$F1$rotation) | |
49 | |
50 score <- data.frame(cbind(design, t(fit@residuals$'F1:F2')%*%fit@components$F1$rotation)) | |
51 | |
52 pc <- fit@components$F1$sdev / sum(fit@components$F1$sdev) | |
53 | |
54 sp <- ggplot(score_moyen, aes(x=PC1, y=PC2)) | |
55 sp + geom_point(size=2) + xlab(paste("PC1", round(pc[1]*100,1), "%")) + ylab(paste("PC2", round(pc[2]*100,1), "%")) + | |
56 geom_text(data=score, aes(PC1, PC2, label=Ind, col=F1), size=4, hjust=0, nudge_x=0.05, vjust=0, nudge_y=0.5) | |
57 | |
58 |