2
|
1 ## ==========================
|
|
2 # Internal functions
|
|
3 ## ==========================
|
|
4
|
|
5 # beginTreatment
|
|
6 beginTreatment <- function(name, Signal_data = NULL, Signal_info = NULL,
|
|
7 force.real = FALSE) {
|
|
8
|
|
9 cat("Begin", name, "\n")
|
|
10
|
|
11
|
|
12 # Formatting the Signal_data and Signal_info -----------------------
|
|
13
|
|
14 vec <- is.vector(Signal_data)
|
|
15 if (vec) {
|
|
16 Signal_data <- vec2mat(Signal_data)
|
|
17 }
|
|
18 if (is.vector(Signal_info)) {
|
|
19 Signal_info <- vec2mat(Signal_info)
|
|
20 }
|
|
21 if (!is.null(Signal_data)) {
|
|
22 if (!is.matrix(Signal_data)) {
|
|
23 stop("Signal_data is not a matrix.")
|
|
24 }
|
|
25 if (!is.complex(Signal_data) && !is.numeric(Signal_data)) {
|
|
26 stop("Signal_data contains non-numerical values.")
|
|
27 }
|
|
28 }
|
|
29 if (!is.null(Signal_info) && !is.matrix(Signal_info)) {
|
|
30 stop("Signal_info is not a matrix.")
|
|
31 }
|
|
32
|
|
33
|
|
34 Original_data <- Signal_data
|
|
35
|
|
36 # Extract the real part of the spectrum ---------------------------
|
|
37
|
|
38 if (force.real) {
|
|
39 if (is.complex(Signal_data)) {
|
|
40 Signal_data <- Re(Signal_data)
|
|
41 } else {
|
|
42 # The signal is numeric Im(Signal_data) is zero anyway so let's avoid
|
|
43 # using complex(real=...,imaginary=0) which would give a complex signal
|
|
44 # in endTreatment()
|
|
45 force.real <- FALSE
|
|
46 }
|
|
47 }
|
|
48
|
|
49
|
|
50 # Return the formatted data and metadata entries --------------------
|
|
51
|
|
52 return(list(start = proc.time(), vec = vec, force.real = force.real,
|
|
53 Original_data = Original_data, Signal_data = Signal_data, Signal_info = Signal_info))
|
|
54 }
|
|
55
|
|
56 # endTreatment
|
|
57 endTreatment <- function(name, begin_info, Signal_data) {
|
|
58
|
|
59 # begin_info: object outputted from beginTreatment
|
|
60
|
|
61
|
|
62 # Formatting the entries and printing process time -----------------------
|
|
63 end_time <- proc.time() # record it as soon as possible
|
|
64 start_time <- begin_info[["start"]]
|
|
65 delta_time <- end_time - start_time
|
|
66 delta <- delta_time[]
|
|
67 cat("End", name, "\n")
|
|
68 cat("It lasted", round(delta["user.self"], 3), "s user time,", round(delta["sys.self"],3),
|
|
69 "s system time and", round(delta["elapsed"], 3), "s elapsed time.\n")
|
|
70
|
|
71
|
|
72 if (begin_info[["force.real"]]) {
|
|
73 # The imaginary part is left untouched
|
|
74 i <- complex(real = 0, imaginary = 1)
|
|
75 Signal_data <- Signal_data + i * Im(begin_info[["Original_data"]])
|
|
76 }
|
|
77
|
|
78 if (begin_info[["vec"]]) {
|
|
79 Signal_data <- Signal_data[1, ]
|
|
80 }
|
|
81
|
|
82 # Return the formatted data and metadata entries --------------------
|
|
83 return(Signal_data)
|
|
84 }
|
|
85
|
|
86 # checkArg
|
|
87 checkArg <- function(arg, checks, can.be.null=FALSE) {
|
|
88 check.list <- list(bool=c(is.logical, "a boolean"),
|
|
89 int =c(function(x){x%%1==0}, "an integer"),
|
|
90 num =c(is.numeric, "a numeric"),
|
|
91 str =c(is.character, "a string"),
|
|
92 pos =c(function(x){x>0}, "positive"),
|
|
93 pos0=c(function(x){x>=0}, "positive or zero"),
|
|
94 l1 =c(function(x){length(x)==1}, "of length 1")
|
|
95 )
|
|
96 if (is.null(arg)) {
|
|
97 if (!can.be.null) {
|
|
98 stop(deparse(substitute(arg)), " is null.")
|
|
99 }
|
|
100 } else {
|
|
101 if (is.matrix(arg)) {
|
|
102 stop(deparse(substitute(arg)), " is not scalar.")
|
|
103 }
|
|
104 for (c in checks) {
|
|
105 if (!check.list[[c]][[1]](arg)) {
|
|
106 stop(deparse(substitute(arg)), " is not ", check.list[[c]][[2]], ".")
|
|
107 }
|
|
108 }
|
|
109 }
|
|
110 }
|
|
111
|
|
112 # getArg
|
|
113 getArg <- function(arg, info, argname, can.be.absent=FALSE) {
|
|
114 if (is.null(arg)) {
|
|
115 start <- paste("impossible to get argument", argname, "it was not given directly and");
|
|
116 if (!is.matrix(info)) {
|
|
117 stop(paste(start, "the info matrix was not given"))
|
|
118 }
|
|
119 if (!(argname %in% colnames(info))) {
|
|
120 if (can.be.absent) {
|
|
121 return(NULL)
|
|
122 } else {
|
|
123 stop(paste(start, "is not in the info matrix"))
|
|
124 }
|
|
125 }
|
|
126 if (nrow(info) < 1) {
|
|
127 stop(paste(start, "the info matrix has no row"))
|
|
128 }
|
|
129 arg <- info[1,argname]
|
|
130 if (is.na(arg)) {
|
|
131 stop(paste(start, "it is NA in the info matrix"))
|
|
132 }
|
|
133 }
|
|
134 return(arg)
|
|
135 }
|
|
136
|
|
137 # binarySearch
|
|
138 binarySearch <- function(a, target, lower = TRUE) {
|
|
139 # search the index i in a such that a[i] == target
|
|
140 # if it doesn't exists and lower, it searches the closer a[i] such that a[i] < target
|
|
141 # if !lower, it seraches the closer a[i] such that a[i] > target
|
|
142 # a should be monotone but can be increasing or decreasing
|
|
143
|
|
144 # if a is increasing INVARIANT: a[amin] < target < a[amax]
|
|
145 N <- length(a)
|
|
146 if ((a[N] - target) * (a[N] - a[1]) <= 0) {
|
|
147 return(N)
|
|
148 }
|
|
149 if ((a[1] - target) * (a[N] - a[1]) >= 0) {
|
|
150 return(1)
|
|
151 }
|
|
152 amin <- 1
|
|
153 amax <- N
|
|
154 while (amin + 1 < amax) {
|
|
155 amid <- floor((amin + amax)/2)
|
|
156 if ((a[amid] - target) * (a[amax] - a[amid]) < 0) {
|
|
157 amin <- amid
|
|
158 } else if ((a[amid] - target) * (a[amax] - a[amid]) > 0) {
|
|
159 amax <- amid
|
|
160 } else {
|
|
161 # a[amid] == a[amax] or a[amid] == target In both cases, a[amid] ==
|
|
162 # target
|
|
163 return(amid)
|
|
164 }
|
|
165 }
|
|
166 if (xor(lower, a[amin] > a[amax])) {
|
|
167 # (lower && a[amin] < a[amax]) || (!lower && a[min] > a[max])
|
|
168 # If increasing and we want the lower, we take amin
|
|
169 # If decreasing and we want the bigger, we take amin too
|
|
170 return(amin)
|
|
171 } else {
|
|
172 return(amax)
|
|
173 }
|
|
174 }
|
|
175
|
|
176 # Interpol
|
|
177 Interpol <- function(t, y) {
|
|
178 # y: sample
|
|
179 # t : warping function
|
|
180
|
|
181 m <- length(y)
|
|
182 # t <= m-1
|
|
183 # because if t > m-1, y[ti+1] will be NA when we compute g
|
|
184 valid <- 1 <= t & t <= m-1 # FIXME it was '<' in Bubble v2
|
|
185 s <- (1:m)[valid]
|
|
186 ti <- floor(t[s])
|
|
187 tr <- t[s] - ti
|
|
188 g <- y[ti + 1] - y[ti]
|
|
189 f <- y[ti] + tr * g
|
|
190 list(f=f, s=s, g=g)
|
|
191 }
|
|
192
|
|
193 # vec2mat
|
|
194 vec2mat <- function(vec) {
|
|
195 return(matrix(vec, nrow = 1, dimnames = list(c(1), names(vec))))
|
|
196
|
|
197 }
|
|
198
|
|
199 # binarySearch
|
|
200 binarySearch <- function(a, target, lower = TRUE) {
|
|
201 # search the index i in a such that a[i] == target
|
|
202 # if it doesn't exists and lower, it searches the closer a[i] such that a[i] < target
|
|
203 # if !lower, it seraches the closer a[i] such that a[i] > target
|
|
204 # a should be monotone but can be increasing or decreasing
|
|
205
|
|
206 # if a is increasing INVARIANT: a[amin] < target < a[amax]
|
|
207 N <- length(a)
|
|
208 if ((a[N] - target) * (a[N] - a[1]) <= 0) {
|
|
209 return(N)
|
|
210 }
|
|
211 if ((a[1] - target) * (a[N] - a[1]) >= 0) {
|
|
212 return(1)
|
|
213 }
|
|
214 amin <- 1
|
|
215 amax <- N
|
|
216 while (amin + 1 < amax) {
|
|
217 amid <- floor((amin + amax)/2)
|
|
218 if ((a[amid] - target) * (a[amax] - a[amid]) < 0) {
|
|
219 amin <- amid
|
|
220 } else if ((a[amid] - target) * (a[amax] - a[amid]) > 0) {
|
|
221 amax <- amid
|
|
222 } else {
|
|
223 # a[amid] == a[amax] or a[amid] == target In both cases, a[amid] ==
|
|
224 # target
|
|
225 return(amid)
|
|
226 }
|
|
227 }
|
|
228 if (xor(lower, a[amin] > a[amax])) {
|
|
229 # (lower && a[amin] < a[amax]) || (!lower && a[min] > a[max])
|
|
230 # If increasing and we want the lower, we take amin
|
|
231 # If decreasing and we want the bigger, we take amin too
|
|
232 return(amin)
|
|
233 } else {
|
|
234 return(amax)
|
|
235 }
|
|
236 }
|
|
237
|
|
238
|
|
239 # indexInterval
|
|
240 indexInterval <- function (a, from, to, inclusive=TRUE) {
|
|
241 # If inclusive and from <= to, we need to take the lower
|
|
242 # If not inclusive and from > to, we need to take the lower too
|
|
243 lowerFrom <- xor(inclusive, from > to)
|
|
244 fromIndex <- binarySearch(a, from, lowerFrom)
|
|
245 toIndex <- binarySearch(a, to, !lowerFrom)
|
|
246 return(fromIndex:toIndex)
|
|
247 }
|
|
248
|
|
249
|
|
250
|
|
251 ## ==========================
|
|
252 # GroupDelayCorrection
|
|
253 ## ==========================
|
|
254 GroupDelayCorrection <- function(Fid_data, Fid_info = NULL, group_delay = NULL) {
|
|
255
|
|
256
|
|
257 # Data initialisation and checks ----------------------------------------------
|
|
258
|
|
259 begin_info <- beginTreatment("GroupDelayCorrection", Fid_data, Fid_info)
|
|
260 Fid_data <- begin_info[["Signal_data"]]
|
|
261 dimension_names <- dimnames(Fid_data)
|
|
262 Fid_info <- begin_info[["Signal_info"]]
|
|
263 checkArg(group_delay, c("num", "pos0"), can.be.null = TRUE)
|
|
264 # if Fid_info and group_delay are NULL, getArg will generate an error
|
|
265
|
|
266 group_delay <- getArg(group_delay, Fid_info, "GRPDLY", can.be.absent = TRUE)
|
|
267
|
|
268 if (is.null(group_delay)) {
|
|
269
|
|
270 # See DetermineBrukerDigitalFilter.m in matNMR MATLAB library
|
|
271 group_delay_matrix <- matrix(c(44.75, 46, 46.311, 33.5, 36.5, 36.53, 66.625,
|
|
272 48, 47.87, 59.0833, 50.1667, 50.229, 68.5625, 53.25, 53.289, 60.375,
|
|
273 69.5, 69.551, 69.5313, 72.25, 71.6, 61.0208, 70.1667, 70.184, 70.0156,
|
|
274 72.75, 72.138, 61.3438, 70.5, 70.528, 70.2578, 73, 72.348, 61.5052, 70.6667,
|
|
275 70.7, 70.3789, 72.5, 72.524, 61.5859, 71.3333, NA, 70.4395, 72.25, NA,
|
|
276 61.6263, 71.6667, NA, 70.4697, 72.125, NA, 61.6465, 71.8333, NA, 70.4849,
|
|
277 72.0625, NA, 61.6566, 71.9167, NA, 70.4924, 72.0313, NA), nrow = 21,
|
|
278 ncol = 3, byrow = TRUE, dimnames = list(c(2, 3, 4, 6, 8, 12, 16, 24,
|
|
279 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048),
|
|
280 c(10, 11, 12)))
|
|
281 decim <- Fid_info[1, "DECIM"]
|
|
282 dspfvs <- Fid_info[1, "DSPFVS"]
|
|
283 if (!(toString(decim) %in% rownames(group_delay_matrix))) {
|
|
284 stop(paste("Invalid DECIM", decim, "it should be one of", rownames(group_delay_matrix)))
|
|
285 }
|
|
286 if (!(toString(dspfvs) %in% colnames(group_delay_matrix))) {
|
|
287 stop(paste("Invalid DSPFVS", dspfvs, "it should be one of", colnames(group_delay_matrix)))
|
|
288 }
|
|
289 group_delay <- group_delay_matrix[toString(decim), toString(dspfvs)]
|
|
290 if (is.na(group_delay)) {
|
|
291 stop(paste("Invalid DECIM", decim, "for DSPFVS", dspfvs))
|
|
292 }
|
|
293 }
|
|
294 m <- ncol(Fid_data)
|
|
295 n <- nrow(Fid_data)
|
|
296
|
|
297 # GroupDelayCorrection ----------------------------------------------
|
|
298
|
|
299 # We do the shifting in the Fourier domain because the shift can be non-integer.
|
|
300 # That way we automatically have the circular behaviour of the shift and the
|
|
301 # interpolation if it is non-integer.
|
|
302
|
|
303 Spectrum <- t(stats::mvfft(t(Fid_data)))
|
|
304
|
|
305 # Spectrum <- FourierTransform(Fid_data, Fid_info)
|
|
306 p <- ceiling(m/2)
|
|
307 new_index <- c((p + 1):m, 1:p)
|
|
308 Spectrum <- Spectrum[,new_index]
|
|
309 Spectrum <- matrix(data = Spectrum, ncol = m, nrow = n)
|
|
310
|
|
311 Omega <- (0:(m - 1))/m
|
|
312 i <- complex(real = 0, imaginary = 1)
|
|
313
|
|
314 if (n>1) {
|
|
315 Spectrum <- sweep(Spectrum, MARGIN = 2, exp(i * group_delay * 2 * pi * Omega), `*`)
|
|
316 Spectrum <- Spectrum[,new_index]
|
|
317 }else {
|
|
318 Spectrum <- Spectrum* exp(i * group_delay * 2 * pi * Omega)
|
|
319 Spectrum <- Spectrum[new_index]
|
|
320 Spectrum <- matrix(data = Spectrum, ncol = m, nrow = n)
|
|
321 }
|
|
322
|
|
323
|
|
324 Fid_data <- t(stats::mvfft(t(Spectrum), inverse = TRUE))/m
|
|
325 colnames(Fid_data) <- dimension_names[[2]]
|
|
326 rownames(Fid_data) <- dimension_names[[1]]
|
|
327
|
|
328 # Data finalisation ----------------------------------------------
|
|
329
|
|
330 return(endTreatment("GroupDelayCorrection", begin_info, Fid_data))
|
|
331 }
|
|
332
|
|
333 ## ==========================
|
|
334 # SolventSuppression
|
|
335 ## ==========================
|
|
336 SolventSuppression <- function(Fid_data, lambda.ss = 1e+06, ptw.ss = TRUE,
|
|
337 plotSolvent = F, returnSolvent = F) {
|
|
338
|
|
339 # Data initialisation and checks ----------------------------------------------
|
|
340
|
|
341 begin_info <- beginTreatment("SolventSuppression", Fid_data)
|
|
342 Fid_data <- begin_info[["Signal_data"]]
|
|
343 checkArg(ptw.ss, c("bool"))
|
|
344 checkArg(lambda.ss, c("num", "pos0"))
|
|
345
|
|
346
|
|
347 # difsm function definition for the smoother -----------------------------------
|
|
348
|
|
349 if (ptw.ss) {
|
|
350 # Use of the function in ptw that smoothes signals with a finite difference
|
|
351 # penalty of order 2
|
|
352 difsm <- ptw::difsm
|
|
353 } else {
|
|
354 # Or manual implementation based on sparse matrices for large data series (cf.
|
|
355 # Eilers, 2003. 'A perfect smoother')
|
|
356 difsm <- function(y, d = 2, lambda) {
|
|
357
|
|
358 m <- length(y)
|
|
359 # Sparse identity matrix m x m
|
|
360 E <- Matrix::Diagonal(m)
|
|
361 D <- Matrix::diff(E, differences = d)
|
|
362 A <- E + lambda.ss * Matrix::t(D) %*% D
|
|
363 # base::chol does not take into account that A is sparse and is extremely slow
|
|
364 C <- Matrix::chol(A)
|
|
365 x <- Matrix::solve(C, Matrix::solve(Matrix::t(C), y))
|
|
366 return(as.numeric(x))
|
|
367 }
|
|
368 }
|
|
369
|
|
370 # Solvent Suppression ----------------------------------------------
|
|
371
|
|
372 n <- dim(Fid_data)[1]
|
|
373 if (returnSolvent) {
|
|
374 SolventRe <- Fid_data
|
|
375 SolventIm <- Fid_data
|
|
376 }
|
|
377 for (i in 1:n) {
|
|
378 FidRe <- Re(Fid_data[i, ])
|
|
379 FidIm <- Im(Fid_data[i, ])
|
|
380 solventRe <- difsm(y = FidRe, lambda = lambda.ss)
|
|
381 solventIm <- difsm(y = FidIm, lambda = lambda.ss)
|
|
382
|
|
383 if (plotSolvent) {
|
|
384 m <- length(FidRe)
|
|
385 graphics::plot(1:m, FidRe, type = "l", col = "red")
|
|
386 graphics::lines(1:m, solventRe, type = "l", col = "blue")
|
|
387 graphics::plot(1:m, FidIm, type = "l", col = "red")
|
|
388 graphics::lines(1:m, solventIm, type = "l", col = "blue")
|
|
389 }
|
|
390 FidRe <- FidRe - solventRe
|
|
391 FidIm <- FidIm - solventIm
|
|
392 Fid_data[i, ] <- complex(real = FidRe, imaginary = FidIm)
|
|
393 if (returnSolvent) {
|
|
394 SolventRe[i, ] <- solventRe
|
|
395 SolventIm[i, ] <- solventIm
|
|
396 }
|
|
397 }
|
|
398
|
|
399
|
|
400 # Data finalisation ----------------------------------------------
|
|
401
|
|
402 Fid_data <- endTreatment("SolventSuppression", begin_info, Fid_data)
|
|
403 if (returnSolvent) {
|
|
404 return(list(Fid_data = Fid_data, SolventRe = SolventRe, SolventIm = SolventIm))
|
|
405 } else {
|
|
406 return(Fid_data)
|
|
407 }
|
|
408 }
|
|
409
|
|
410
|
|
411 ## ==========================
|
|
412 # Apodization
|
|
413 # =============================
|
|
414 Apodization <- function(Fid_data, Fid_info = NULL, DT = NULL,
|
|
415 type.apod = c("exp","cos2", "blockexp", "blockcos2",
|
|
416 "gauss", "hanning", "hamming"), phase = 0, rectRatio = 1/2,
|
|
417 gaussLB = 1, expLB = 1, plotWindow = F, returnFactor = F) {
|
|
418
|
|
419 # Data initialisation and checks ----------------------------------------------
|
|
420 begin_info <- beginTreatment("Apodization", Fid_data, Fid_info)
|
|
421 Fid_data <- begin_info[["Signal_data"]]
|
|
422 Fid_info <- begin_info[["Signal_info"]]
|
|
423 # Data check
|
|
424 type.apod <- match.arg(type.apod)
|
|
425 checkArg(DT, c("num", "pos"), can.be.null = TRUE)
|
|
426 checkArg(phase, c("num"))
|
|
427
|
|
428 # Apodization ----------------------------------------------
|
|
429 DT <- getArg(DT, Fid_info, "DT") # Dwell Time
|
|
430 m <- ncol(Fid_data)
|
|
431 t <- (1:m) * DT # Time
|
|
432 rectSize <- ceiling(rectRatio * m)
|
|
433 gaussLB <- (gaussLB/(sqrt(8 * log(2))))
|
|
434 # Define the types of apodization:
|
|
435 switch(type.apod, exp = {
|
|
436 # exponential
|
|
437 Factor <- exp(-expLB * t)
|
|
438 }, cos2 = {
|
|
439 # cos^2
|
|
440 c <- cos((1:m) * pi/(2 * m) - phase * pi/2)
|
|
441 Factor <- c * c
|
|
442 }, blockexp = {
|
|
443 # block and exponential
|
|
444 Factor <- c(rep.int(1, rectSize), rep.int(0, m - rectSize))
|
|
445 # | rectSize | 1 ___________ | \ 0 \____
|
|
446 Factor[(rectSize + 1):m] <- exp(-expLB * t[1:(m - rectSize)])
|
|
447 }, blockcos2 = {
|
|
448 # block and cos^2
|
|
449 Factor <- c(rep.int(1, rectSize), rep.int(0, m - rectSize))
|
|
450 c <- cos((1:(m - rectSize)) * pi/(2 * (m - rectSize)))
|
|
451 Factor[(rectSize + 1):m] <- c * c
|
|
452 }, gauss = {
|
|
453 # gaussian
|
|
454 Factor <- exp(-(gaussLB * t)^2/2)
|
|
455 Factor <- Factor/max(Factor)
|
|
456 }, hanning = {
|
|
457 # Hanning
|
|
458 Factor <- 0.5 + 0.5 * cos((1:m) * pi/m - phase * pi)
|
|
459 }, hamming = {
|
|
460 # Hamming
|
|
461 Factor <- 0.54 + 0.46 * cos((1:m) * pi/m - phase * pi)
|
|
462 })
|
|
463 if (plotWindow) {
|
|
464 graphics::plot(1:m, Factor, "l")
|
|
465 # dev.off() # device independent, it is the responsability of the
|
|
466 # caller to do it
|
|
467 }
|
|
468 # Apply the apodization factor on the spectra
|
|
469 Fid_data <- sweep(Fid_data, MARGIN = 2, Factor, `*`)
|
|
470
|
|
471 # Data finalisation ----------------------------------------------
|
|
472 Fid_data <- endTreatment("Apodization", begin_info, Fid_data)
|
|
473 if (returnFactor) {
|
|
474 return(list(Fid_data = Fid_data, Factor = Factor))
|
|
475 } else {
|
|
476 return(Fid_data)
|
|
477 }
|
|
478 }
|
|
479
|
|
480
|
|
481 ## ====================================================
|
|
482 # FourierTransform
|
|
483 ## ====================================================
|
|
484
|
|
485
|
|
486 # fftshift1D2D
|
|
487 fftshift1D2D <- function(x) {
|
|
488 vec <- F
|
|
489 if (is.vector(x)) {
|
|
490 x <- vec2mat(x)
|
|
491 vec <- T
|
|
492 }
|
|
493 m <- dim(x)[2]
|
|
494 p <- ceiling(m/2)
|
|
495 new_index <- c((p + 1):m, 1:p)
|
|
496 y <- x[, new_index, drop = vec]
|
|
497 }
|
|
498
|
|
499 # FourierTransform
|
|
500 FourierTransform <- function(Fid_data, Fid_info = NULL, SW_h = NULL, SW = NULL, O1 = NULL, reverse.axis = TRUE) {
|
|
501
|
|
502 # Data initialisation and checks ----------------------------------------------
|
|
503 begin_info <- beginTreatment("FourierTransform", Fid_data, Fid_info)
|
|
504 Fid_data <- begin_info[["Signal_data"]]
|
|
505 Fid_info <- begin_info[["Signal_info"]]
|
|
506
|
|
507 m <- ncol(Fid_data)
|
|
508 n <- nrow(Fid_data)
|
|
509
|
|
510 if (is.null(SW_h)) {
|
|
511 SW_h <- getArg(SW_h, Fid_info, "SW_h")
|
|
512 }
|
|
513
|
|
514 if (is.null(SW)) {
|
|
515 SW <- getArg(SW, Fid_info, "SW") # Sweep Width in ppm (semi frequency scale in ppm)
|
|
516 }
|
|
517
|
|
518
|
|
519 if (is.null(O1)) {
|
|
520 O1 <- getArg(O1, Fid_info, "O1")
|
|
521 }
|
|
522
|
|
523
|
|
524 checkArg(reverse.axis, c("bool"))
|
|
525
|
|
526 # Fourier Transformation ----------------------------------------------
|
|
527 # mvfft does the unnormalized fourier transform (see ?mvfft), so we need divide
|
|
528 # by m. It does not matter a lot in our case since the spectrum will be
|
|
529 # normalized.
|
|
530
|
|
531 # FT
|
|
532 RawSpect_data <- fftshift1D2D(t(stats::mvfft(t(Fid_data))))
|
|
533 # recover the frequencies values
|
|
534 f <- ((0:(m - 1)) - floor(m/2)) * Fid_info[1, "SW_h"]/(m-1)
|
|
535
|
|
536 if(reverse.axis == TRUE) {
|
|
537 revind <- rev(1:m)
|
|
538 RawSpect_data <- RawSpect_data[,revind] # reverse the spectrum
|
|
539 }
|
|
540
|
|
541 RawSpect_data <- matrix(RawSpect_data, nrow = n, ncol = m)
|
|
542 colnames(RawSpect_data) <- f
|
|
543 rownames(RawSpect_data) <- rownames(Fid_data)
|
|
544
|
|
545 # PPM conversion ----------------------------------------------
|
|
546
|
|
547 # The Sweep Width has to be the same since the column names are the same
|
|
548
|
|
549 ppmInterval <- SW/(m-1)
|
|
550
|
|
551 O1index = round((m+1)/2+O1*(m - 1) / SW_h)
|
|
552
|
|
553 end <- O1index - m
|
|
554 start <- O1index -1
|
|
555 ppmScale <- (start:end) * ppmInterval
|
|
556 RawSpect_data <- matrix(RawSpect_data, nrow = n, ncol = -(end - start) + 1, dimnames =
|
|
557 list(rownames(RawSpect_data), ppmScale))
|
|
558
|
|
559
|
|
560 # Data finalisation ----------------------------------------------
|
|
561 return(endTreatment("FourierTransform", begin_info, RawSpect_data))
|
|
562 }
|
|
563
|
|
564 ## ====================================================
|
|
565 # InternalReferencing
|
|
566 ## ====================================================
|
|
567
|
|
568 InternalReferencing <- function(Spectrum_data, Fid_info, method = c("max", "thres"),
|
|
569 range = c("nearvalue", "all", "window"), ppm.value = 0,
|
|
570 direction = "left", shiftHandling = c("zerofilling", "cut",
|
|
571 "NAfilling", "circular"), c = 2, pc = 0.02, fromto.RC = NULL,
|
|
572 ppm.ir = TRUE, rowindex_graph = NULL) {
|
|
573
|
|
574
|
|
575
|
|
576 # Data initialisation and checks ----------------------------------------------
|
|
577
|
|
578 begin_info <- beginTreatment("InternalReferencing", Spectrum_data, Fid_info)
|
|
579 Spectrum_data <- begin_info[["Signal_data"]]
|
|
580 Fid_info <- begin_info[["Signal_info"]]
|
|
581
|
|
582
|
|
583 ######## Check input arguments
|
|
584
|
|
585 range <- match.arg(range)
|
|
586 shiftHandling <- match.arg(shiftHandling)
|
|
587 method <- match.arg(method)
|
|
588 plots <- NULL
|
|
589
|
|
590 checkArg(ppm.ir, c("bool"))
|
|
591 checkArg(unlist(fromto.RC), c("num"), can.be.null = TRUE)
|
|
592 checkArg(pc, c("num"))
|
|
593 checkArg(ppm.value, c("num"))
|
|
594 checkArg(rowindex_graph, "num", can.be.null = TRUE)
|
|
595
|
|
596 # fromto.RC : if range == "window",
|
|
597 # fromto.RC defines the spectral window where to search for the peak
|
|
598 if (!is.null(fromto.RC)) {
|
|
599 diff <- diff(unlist(fromto.RC))[1:length(diff(unlist(fromto.RC)))%%2 !=0]
|
|
600 for (i in 1:length(diff)) {
|
|
601 if (diff[i] >= 0) {
|
|
602 fromto <- c(fromto.RC[[i]][2], fromto.RC[[i]][1])
|
|
603 fromto.RC[[i]] <- fromto
|
|
604 }
|
|
605 }
|
|
606 }
|
|
607
|
|
608
|
|
609 # findTMSPpeak function ----------------------------------------------
|
|
610 # If method == "tresh", findTMSPpeak will find the position of the first
|
|
611 # peak (from left or right) which is higher than a predefined threshold
|
|
612 # and is computed as: c*(cumulated_mean/cumulated_sd)
|
|
613 findTMSPpeak <- function(ft, c = 2, direction = "left") {
|
|
614 ft <- Re(ft) # extraction de la partie réelle
|
|
615 N <- length(ft)
|
|
616 if (direction == "left") {
|
|
617 newindex <- rev(1:N)
|
|
618 ft <- rev(ft)
|
|
619 }
|
|
620 thres <- 99999
|
|
621 i <- 1000 # Start at point 1000 to find the peak
|
|
622 vect <- ft[1:i]
|
|
623
|
|
624 while (vect[i] <= (c * thres)) {
|
|
625 cumsd <- stats::sd(vect)
|
|
626 cummean <- mean(vect)
|
|
627 thres <- cummean + 3 * cumsd
|
|
628 i <- i + 1
|
|
629 vect <- ft[1:i]
|
|
630 }
|
|
631 if (direction == "left") {
|
|
632 v <- newindex[i]
|
|
633 } else {v <- i}
|
|
634
|
|
635 if (is.na(v)) {
|
|
636 warning("No peak found, need to lower the threshold.")
|
|
637 return(NA)
|
|
638 } else {
|
|
639 # recherche dans les 1% de points suivants du max trouve pour etre au sommet du
|
|
640 # pic
|
|
641 d <- which.max(ft[v:(v + N * 0.01)])
|
|
642 new.peak <- v + d - 1 # nouveau pic du TMSP si d > 0
|
|
643
|
|
644 if (names(which.max(ft[v:(v + N * 0.01)])) != names(which.max(ft[v:(v + N * 0.03)]))) {
|
|
645 # recherche dans les 3% de points suivants du max trouve pour eviter un faux
|
|
646 # positif
|
|
647 warning("the TMSP peak might be located further away, increase the threshold to check.")
|
|
648 }
|
|
649 return(new.peak)
|
|
650 }
|
|
651 }
|
|
652
|
|
653
|
|
654 # Define the search zone ----------------------------------------
|
|
655
|
|
656 n <- nrow(Spectrum_data)
|
|
657 m <- ncol(Spectrum_data)
|
|
658
|
|
659 # The Sweep Width (SW) has to be the same since the column names are the same
|
|
660 SW <- Fid_info[1, "SW"] # Sweep Width in ppm
|
|
661 ppmInterval <- SW/(m-1) # size of a ppm interval
|
|
662
|
|
663 # range: How the search zone is defined ("all", "nearvalue" or "window")
|
|
664 if (range == "all") {
|
|
665
|
|
666 Data <- Spectrum_data
|
|
667
|
|
668 } else { # range = "nearvalue" or "window"
|
|
669 # Need to define colindex (column indexes) to apply indexInterval on it
|
|
670
|
|
671 if (range == "nearvalue") {
|
|
672
|
|
673 fromto.RC <- list(c(-(SW * pc)/2 + ppm.value, (SW * pc)/2 + ppm.value)) # automatic fromto values in ppm
|
|
674 colindex <- as.numeric(colnames(Spectrum_data))
|
|
675
|
|
676 } else {
|
|
677 # range == "window"
|
|
678 # fromto.RC is already user-defined
|
|
679 if (ppm.ir == TRUE) {
|
|
680 colindex <- as.numeric(colnames(Spectrum_data))
|
|
681 } else {
|
|
682 colindex <- 1:m
|
|
683 }
|
|
684 }
|
|
685
|
|
686 # index intervals taking into account the different elements in the list fromto.RC
|
|
687 Int <- vector("list", length(fromto.RC))
|
|
688 for (i in 1:length(fromto.RC)) {
|
|
689 Int[[i]] <- indexInterval(colindex, from = fromto.RC[[i]][1],
|
|
690 to = fromto.RC[[i]][2], inclusive = TRUE)
|
|
691 }
|
|
692
|
|
693 # define Data as the cropped spectrum including the index intervals
|
|
694 # outside the research zone, the intensities are set to the minimal
|
|
695 # intensity of the research zone
|
|
696
|
|
697 if (n > 1){
|
|
698 Data <- apply(Re(Spectrum_data[,unlist(Int)]),1, function(x) rep(min(x), m))
|
|
699 Data <- t(Data)
|
|
700 Data[,unlist(Int)] <- Re(Spectrum_data[,unlist(Int)])
|
|
701 } else {
|
|
702 Data <- rep(min(Re(Spectrum_data)) ,m)
|
|
703 Data[unlist(Int)] <- Re(Spectrum_data[unlist(Int)])
|
|
704 }
|
|
705
|
|
706 }
|
|
707
|
|
708
|
|
709 # Apply the peak location search method ('thres' or 'max') on spectra
|
|
710 # -----------------------------------------------------------------------
|
|
711
|
|
712 if (method == "thres") {
|
|
713 TMSPpeaks <- apply(Data, 1, findTMSPpeak, c = c, direction = direction)
|
|
714 } else { # method == "max
|
|
715 TMSPpeaks <- apply(Re(Data), 1, which.max)
|
|
716 }
|
|
717
|
|
718
|
|
719 # Shift spectra according to the TMSPpeaks found --------------------------------
|
|
720 # Depends on the shiftHandling
|
|
721
|
|
722 # TMSPpeaks is a column index
|
|
723 maxpeak <- max(TMSPpeaks) # max accross spectra
|
|
724 minpeak <- min(TMSPpeaks) # min accross spectra
|
|
725
|
|
726
|
|
727 if (shiftHandling %in% c("zerofilling", "NAfilling", "cut")) {
|
|
728 fill <- NA
|
|
729 if (shiftHandling == "zerofilling") {
|
|
730 fill <- 0
|
|
731 }
|
|
732
|
|
733 start <- maxpeak - 1
|
|
734 end <- minpeak - m
|
|
735
|
|
736 # ppm values of each interval for the whole spectral range of the spectral matrix
|
|
737 ppmScale <- (start:end) * ppmInterval
|
|
738
|
|
739 # check if ppm.value is in the ppmScale interval
|
|
740 if(ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) {
|
|
741 warning("ppm.value = ", ppm.value, " is not in the ppm interval [",
|
|
742 round(min(ppmScale),2), ",", round(max(ppmScale),2), "], and is set to its default ppm.value 0")
|
|
743 ppm.value = 0
|
|
744 }
|
|
745
|
|
746 # if ppm.value != 0, ppmScale is adapted
|
|
747 ppmScale <- ppmScale + ppm.value
|
|
748
|
|
749 # create the spectral matrix with realigned spectra
|
|
750 Spectrum_data_calib <- matrix(fill, nrow = n, ncol = -(end - start) + 1,
|
|
751 dimnames = list(rownames(Spectrum_data), ppmScale))
|
|
752
|
|
753 # fills in Spectrum_data_calib with shifted spectra
|
|
754 for (i in 1:n) {
|
|
755 shift <- (1 - TMSPpeaks[i]) + start
|
|
756 Spectrum_data_calib[i, (1 + shift):(m + shift)] <- Spectrum_data[i, ]
|
|
757 }
|
|
758
|
|
759 if (shiftHandling == "cut") {
|
|
760 Spectrum_data_calib = as.matrix(stats::na.omit(t(Spectrum_data_calib)))
|
|
761 Spectrum_data_calib = t(Spectrum_data_calib)
|
|
762 base::attr(Spectrum_data_calib, "na.action") <- NULL
|
|
763 }
|
|
764
|
|
765
|
|
766 } else {
|
|
767 # circular
|
|
768 start <- 1 - maxpeak
|
|
769 end <- m - maxpeak
|
|
770
|
|
771 ppmScale <- (start:end) * ppmInterval
|
|
772
|
|
773 # check if ppm.value in is the ppmScale interval
|
|
774 if(ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) {
|
|
775 warning("ppm.value = ", ppm.value, " is not in the ppm interval [",
|
|
776 round(min(ppmScale),2), ",", round(max(ppmScale),2), "], and is set to its default ppm.value 0")
|
|
777 ppm.value = 0
|
|
778 }
|
|
779
|
|
780 # if ppm.value != 0, ppmScale is adapted
|
|
781 ppmScale <- ppmScale + ppm.value
|
|
782
|
|
783 # create the spectral matrix with realigned spectra
|
|
784 Spectrum_data_calib <- matrix(nrow=n, ncol=end-start+1,
|
|
785 dimnames=list(rownames(Spectrum_data), ppmScale))
|
|
786
|
|
787 # fills in Spectrum_data_calib with shifted spectra
|
|
788 for (i in 1:n) {
|
|
789 shift <- (maxpeak-TMSPpeaks[i])
|
|
790 Spectrum_data_calib[i,(1+shift):m] <- Spectrum_data[i,1:(m-shift)]
|
|
791 if (shift > 0) {
|
|
792 Spectrum_data_calib[i,1:shift] <- Spectrum_data[i,(m-shift+1):m]
|
|
793 }
|
|
794 }
|
|
795 }
|
|
796
|
|
797
|
|
798
|
|
799
|
|
800 # Plot of the spectra (depending on rowindex_graph) ---------------------------------------------------
|
|
801
|
|
802 ppm = xstart = value = xend = Legend = NULL # only for R CMD check
|
|
803
|
|
804
|
|
805 # with the search zone for TMSP and the location of the peaks just found
|
|
806 if (!is.null(rowindex_graph)) {
|
|
807
|
|
808 if (range == "window") {
|
|
809 if (ppm.ir == TRUE) {
|
|
810 fromto <- fromto.RC
|
|
811 } else {
|
|
812 fromto <- list()
|
|
813 idcol <- as.numeric(colnames(Spectrum_data))
|
|
814 for (i in 1:length(fromto.RC)) {
|
|
815 fromto[[i]] <- as.numeric(colnames(Spectrum_data))[fromto.RC[[i]]]
|
|
816 }
|
|
817 }
|
|
818 } else {
|
|
819 fromto <- fromto.RC
|
|
820 }
|
|
821
|
|
822 # TMSPloc in ppm
|
|
823 TMSPloc <- as.numeric(colnames(Spectrum_data))[TMSPpeaks[rowindex_graph]]
|
|
824
|
|
825 # num plot per window
|
|
826 num.stacked <- 6
|
|
827
|
|
828 # rectanglar bands of color for the search zone
|
|
829 rects <- data.frame(xstart = sapply(fromto, function(x) x[[1]]),
|
|
830 xend = sapply(fromto, function(x) x[[2]]),
|
|
831 Legend = "Peak search zone and location")
|
|
832
|
|
833 # vlines for TMSP peak
|
|
834 addlines <- data.frame(rowname = rownames(Spectrum_data)[rowindex_graph],TMSPloc)
|
|
835
|
|
836 nn <- length(rowindex_graph)
|
|
837 i <- 1
|
|
838 j <- 1
|
|
839 plots <- vector(mode = "list", length = ceiling(nn/num.stacked))
|
|
840
|
|
841 while (i <= nn) {
|
|
842
|
|
843 last <- min(i + num.stacked - 1, nn)
|
|
844
|
|
845 melted <- reshape2::melt(Re(Spectrum_data[i:last, ]),
|
|
846 varnames = c("rowname", "ppm"))
|
|
847
|
|
848 plots[[j]] <- ggplot2::ggplot() + ggplot2::theme_bw() +
|
|
849 ggplot2::geom_line(data = melted,
|
|
850 ggplot2::aes(x = ppm, y = value)) +
|
|
851 ggplot2::geom_rect(data = rects, ggplot2::aes(xmin = xstart, xmax = xend,
|
|
852 ymin = -Inf, ymax = Inf, fill = Legend), alpha = 0.4) +
|
|
853 ggplot2::facet_grid(rowname ~ ., scales = "free_y") +
|
|
854 ggplot2::theme(legend.position = "none") +
|
|
855 ggplot2::geom_vline(data = addlines, ggplot2::aes(xintercept = TMSPloc),
|
|
856 color = "red", show.legend = TRUE) +
|
|
857 ggplot2::ggtitle("Peak search zone and location") +
|
|
858 ggplot2::theme(legend.position = "top", legend.text = ggplot2::element_text())
|
|
859
|
|
860
|
|
861
|
|
862 if ((melted[1, "ppm"] - melted[(dim(melted)[1]), "ppm"]) > 0) {
|
|
863 plots[[j]] <- plots[[j]] + ggplot2::scale_x_reverse()
|
|
864 }
|
|
865
|
|
866 i <- last + 1
|
|
867 j <- j + 1
|
|
868 }
|
|
869
|
|
870 plots
|
|
871 }
|
|
872
|
|
873
|
|
874 # Return the results ----------------------------------------------
|
|
875 Spectrum_data <- endTreatment("InternalReferencing", begin_info, Spectrum_data_calib)
|
|
876
|
|
877 if (is.null(plots)) {
|
|
878 return(Spectrum_data)
|
|
879 } else {
|
|
880 return(list(Spectrum_data = Spectrum_data, plots = plots))
|
|
881 }
|
|
882
|
|
883 }
|
|
884
|
|
885 ## ====================================================
|
|
886 # ZeroOrderPhaseCorrection
|
|
887 ## ====================================================
|
|
888
|
|
889 ZeroOrderPhaseCorrection <- function(Spectrum_data, type.zopc = c("rms", "manual", "max"),
|
|
890 plot_rms = NULL, returnAngle = FALSE, createWindow = TRUE,
|
|
891 angle = NULL, plot_spectra = FALSE,
|
|
892 ppm.zopc = TRUE, exclude.zopc = list(c(5.1,4.5))) {
|
|
893
|
|
894
|
|
895 # Data initialisation and checks ----------------------------------------------
|
|
896
|
|
897 # Entry arguments definition:
|
|
898 # plot_rms : graph of rms criterion returnAngle : if TRUE, returns avector of
|
|
899 # optimal angles createWindow : for plot_rms plots angle : If angle is not NULL,
|
|
900 # spectra are rotated according to the angle vector values
|
|
901 # plot_spectra : if TRUE, plot rotated spectra
|
|
902
|
|
903
|
|
904
|
|
905 begin_info <- beginTreatment("ZeroOrderPhaseCorrection", Spectrum_data)
|
|
906 Spectrum_data <- begin_info[["Signal_data"]]
|
|
907 n <- nrow(Spectrum_data)
|
|
908 m <- ncol(Spectrum_data)
|
|
909
|
|
910 rnames <- rownames(Spectrum_data)
|
|
911
|
|
912 # Check input arguments
|
|
913 type.zopc <- match.arg(type.zopc)
|
|
914 checkArg(ppm.zopc, c("bool"))
|
|
915 checkArg(unlist(exclude.zopc), c("num"), can.be.null = TRUE)
|
|
916
|
|
917
|
|
918 # type.zopc in c("max", "rms") -----------------------------------------
|
|
919 if (type.zopc %in% c("max", "rms")) {
|
|
920 # angle is found by optimization
|
|
921
|
|
922 # rms function to be optimised
|
|
923 rms <- function(ang, y, meth = c("max", "rms")) {
|
|
924 # if (debug_plot) { graphics::abline(v=ang, col='gray60') }
|
|
925 roty <- y * exp(complex(real = 0, imaginary = ang)) # spectrum rotation
|
|
926 Rey <- Re(roty)
|
|
927
|
|
928 if (meth == "rms") {
|
|
929 ReyPos <- Rey[Rey >= 0] # select positive intensities
|
|
930 POSss <- sum((ReyPos)^2, na.rm = TRUE) # SS for positive intensities
|
|
931 ss <- sum((Rey)^2, na.rm = TRUE) # SS for all intensities
|
|
932 return(POSss/ss) # criterion : SS for positive values / SS for all intensities
|
|
933 } else {
|
|
934 maxi <- max(Rey, na.rm = TRUE)
|
|
935 return(maxi)
|
|
936 }
|
|
937 }
|
|
938
|
|
939
|
|
940 # Define the interval where to search for (by defining Data)
|
|
941 if (is.null(exclude.zopc)) {
|
|
942 Data <- Spectrum_data
|
|
943 } else {
|
|
944
|
|
945 # if ppm.zopc == TRUE, then exclude.zopc is in the colnames values, else, in the column
|
|
946 # index
|
|
947 if (ppm.zopc == TRUE) {
|
|
948 colindex <- as.numeric(colnames(Spectrum_data))
|
|
949 } else {
|
|
950 colindex <- 1:m
|
|
951 }
|
|
952
|
|
953 # Second check for the argument exclude.zopc
|
|
954 diff <- diff(unlist(exclude.zopc))[1:length(diff(unlist(exclude.zopc)))%%2 !=0]
|
|
955 for (i in 1:length(diff)) {
|
|
956 if (ppm.zopc == TRUE & diff[i] >= 0) {
|
|
957 stop(paste("Invalid region removal because from <= to in ppm.zopc"))
|
|
958 } else if (ppm.zopc == FALSE & diff[i] <= 0) {stop(paste("Invalid region removal because from >= to in column index"))}
|
|
959 }
|
|
960
|
|
961
|
|
962 Int <- vector("list", length(exclude.zopc))
|
|
963 for (i in 1:length(exclude.zopc)) {
|
|
964 Int[[i]] <- indexInterval(colindex, from = exclude.zopc[[i]][1],
|
|
965 to = exclude.zopc[[i]][2], inclusive = TRUE)
|
|
966 }
|
|
967
|
|
968 vector <- rep(1, m)
|
|
969 vector[unlist(Int)] <- 0
|
|
970 if (n > 1) {
|
|
971 Data <- sweep(Spectrum_data, MARGIN = 2, FUN = "*", vector) # Cropped_Spectrum
|
|
972 } else {
|
|
973 Data <- Spectrum_data * vector
|
|
974 } # Cropped_Spectrum
|
|
975 }
|
|
976
|
|
977
|
|
978 # angles computation
|
|
979 Angle <- c()
|
|
980 for (k in 1:n)
|
|
981 {
|
|
982 # The function is rms is periodic (period 2pi) and it seems that there is a phase
|
|
983 # x such that rms is unimodal (i.e. decreasing then increasing) on the interval
|
|
984 # [x; x+2pi]. However, if we do the optimization for example on [x-pi; x+pi],
|
|
985 # instead of being decreasing then increasing, it might be increasing then
|
|
986 # decreasing in which case optimize, thinking it is a valley will have to choose
|
|
987 # between the left or the right of this hill and if it chooses wrong, it will end
|
|
988 # up at like x-pi while the minimum is close to x+pi.
|
|
989
|
|
990 # Supposing that rms is unimodal, the classical 1D unimodal optimization will
|
|
991 # work in either [-pi;pi] or [0;2pi] (this is not easy to be convinced by that I
|
|
992 # agree) and we can check which one it is simply by the following trick
|
|
993
|
|
994 f0 <- rms(0, Data[k, ],meth = type.zopc)
|
|
995 fpi <- rms(pi, Data[k, ], meth = type.zopc)
|
|
996 if (f0 < fpi) {
|
|
997 interval <- c(-pi, pi)
|
|
998 } else {
|
|
999 interval <- c(0, 2 * pi)
|
|
1000 }
|
|
1001
|
|
1002 # graphs of rms criteria
|
|
1003 debug_plot <- F # rms should not plot anything now, only when called by optimize
|
|
1004 if (!is.null(plot_rms) && rnames[k] %in% plot_rms) {
|
|
1005 x <- seq(min(interval), max(interval), length.out = 100)
|
|
1006 y <- rep(1, 100)
|
|
1007 for (K in (1:100)) {
|
|
1008 y[K] <- rms(x[K], Data[k, ], meth = type.zopc)
|
|
1009 }
|
|
1010 if (createWindow == TRUE) {
|
|
1011 grDevices::dev.new(noRStudioGD = FALSE)
|
|
1012 }
|
|
1013 graphics::plot(x, y, main = paste("Criterion maximization \n",
|
|
1014 rownames(Data)[k]), ylim = c(0, 1.1),
|
|
1015 ylab = "positiveness criterion", xlab = "angle ")
|
|
1016 debug_plot <- T
|
|
1017 }
|
|
1018
|
|
1019 # Best angle
|
|
1020 best <- stats::optimize(rms, interval = interval, maximum = TRUE,
|
|
1021 y = Data[k,], meth = type.zopc)
|
|
1022 ang <- best[["maximum"]]
|
|
1023
|
|
1024
|
|
1025 if (debug_plot) {
|
|
1026 graphics::abline(v = ang, col = "black")
|
|
1027 graphics::text(x = (ang+0.1*ang), y = (y[ang]-0.1*y[ang]), labels = round(ang, 3))
|
|
1028 }
|
|
1029
|
|
1030 # Spectrum rotation
|
|
1031 Spectrum_data[k, ] <- Spectrum_data[k, ] * exp(complex(real = 0, imaginary = ang))
|
|
1032 Angle <- c(Angle, ang)
|
|
1033 }
|
|
1034
|
|
1035
|
|
1036
|
|
1037
|
|
1038 } else {
|
|
1039 # type.zopc is "manual" -------------------------------------------------------
|
|
1040 # if Angle is already specified and no optimisation is needed
|
|
1041 Angle <- angle
|
|
1042
|
|
1043 if (!is.vector(angle)) {
|
|
1044 stop("angle is not a vector")
|
|
1045 }
|
|
1046
|
|
1047 if (!is.numeric(angle)) {
|
|
1048 stop("angle is not a numeric")
|
|
1049 }
|
|
1050
|
|
1051 if (length(angle) != n) {
|
|
1052 stop(paste("angle has length", length(angle), "and there are", n, "spectra to rotate."))
|
|
1053 }
|
|
1054 for (k in 1:n) {
|
|
1055 Spectrum_data[k, ] <- Spectrum_data[k, ] * exp(complex(real = 0, imaginary = - angle[k]))
|
|
1056 }
|
|
1057 }
|
|
1058
|
|
1059
|
|
1060 # Draw spectra
|
|
1061 if (plot_spectra == TRUE) {
|
|
1062 nn <- ceiling(n/4)
|
|
1063 i <- 1
|
|
1064 for (k in 1:nn) {
|
|
1065 if (createWindow == TRUE) {
|
|
1066 grDevices::dev.new(noRStudioGD = FALSE)
|
|
1067 }
|
|
1068 graphics::par(mfrow = c(4, 2))
|
|
1069 while (i <= n) {
|
|
1070 last <- min(i + 4 - 1, n)
|
|
1071 graphics::plot(Re(Spectrum_data[i, ]), type = "l", ylab = "intensity",
|
|
1072 xlab = "Index", main = paste0(rownames(Spectrum_data)[i], " - Real part"))
|
|
1073 graphics::plot(Im(Spectrum_data[i, ]), type = "l", ylab = "intensity",
|
|
1074 xlab = "Index", main = paste0(rownames(Spectrum_data)[i], " - Imaginary part"))
|
|
1075 i <- i + 1
|
|
1076 }
|
|
1077 i <- last + 1
|
|
1078 }
|
|
1079 }
|
|
1080
|
|
1081
|
|
1082 # Data finalisation ----------------------------------------------
|
|
1083
|
|
1084 Spectrum_data <- endTreatment("ZeroOrderPhaseCorrection", begin_info, Spectrum_data)
|
|
1085 if (returnAngle) {
|
|
1086 return(list(Spectrum_data = Spectrum_data, Angle = Angle))
|
|
1087 } else {
|
|
1088 return(Spectrum_data)
|
|
1089 }
|
|
1090 }
|
|
1091
|
|
1092
|
|
1093 ## ====================================================
|
|
1094 # Baseline Correction
|
|
1095 ## ====================================================
|
|
1096 BaselineCorrection <- function(Spectrum_data, ptw.bc = TRUE, maxIter = 42,
|
|
1097 lambda.bc = 1e+07, p.bc = 0.05, eps = 1e-08,
|
|
1098 ppm.bc = TRUE, exclude.bc = list(c(5.1,4.5)),
|
|
1099 returnBaseline = F) {
|
|
1100
|
|
1101 # Data initialisation ----------------------------------------------
|
|
1102 begin_info <- beginTreatment("BaselineCorrection", Spectrum_data, force.real = T)
|
|
1103 Spectrum_data <- begin_info[["Signal_data"]]
|
|
1104 p <- p.bc
|
|
1105 lambda <- lambda.bc
|
|
1106 n <- dim(Spectrum_data)[1]
|
|
1107 m <- dim(Spectrum_data)[2]
|
|
1108
|
|
1109
|
|
1110 # Data check
|
|
1111 checkArg(ptw.bc, c("bool"))
|
|
1112 checkArg(maxIter, c("int", "pos"))
|
|
1113 checkArg(lambda, c("num", "pos0"))
|
|
1114 checkArg(p.bc, c("num", "pos0"))
|
|
1115 checkArg(eps, c("num", "pos0"))
|
|
1116 checkArg(returnBaseline, c("bool"))
|
|
1117 checkArg(ppm.bc, c("bool"))
|
|
1118 checkArg(unlist(exclude.bc), c("num"), can.be.null = TRUE)
|
|
1119
|
|
1120 # Define the interval where to search for (by defining Data)
|
|
1121 if (is.null(exclude.bc)) {
|
|
1122 exclude_index <- NULL
|
|
1123 } else {
|
|
1124 # if ppm.bc == TRUE, then exclude.bc is in the colnames values, else, in the column
|
|
1125 # index
|
|
1126 if (ppm.bc == TRUE) {
|
|
1127 colindex <- as.numeric(colnames(Spectrum_data))
|
|
1128 } else {
|
|
1129 colindex <- 1:m
|
|
1130 }
|
|
1131
|
|
1132 Int <- vector("list", length(exclude.bc))
|
|
1133 for (i in 1:length(exclude.bc)) {
|
|
1134 Int[[i]] <- indexInterval(colindex, from = exclude.bc[[i]][1],
|
|
1135 to = exclude.bc[[i]][2], inclusive = TRUE)
|
|
1136 }
|
|
1137 exclude_index <- unlist(Int)
|
|
1138 }
|
|
1139
|
|
1140 # Baseline Correction implementation definition ----------------------
|
|
1141
|
|
1142 # 2 Ways: either use the function asysm from the ptw package or by
|
|
1143 # built-in functions
|
|
1144 if (ptw.bc) {
|
|
1145 asysm <- ptw::asysm
|
|
1146 } else {
|
|
1147 difsmw <- function(y, lambda, w, d) {
|
|
1148 # Weighted smoothing with a finite difference penalty cf Eilers, 2003.
|
|
1149 # (A perfect smoother)
|
|
1150 # y: signal to be smoothed
|
|
1151 # lambda: smoothing parameter
|
|
1152 # w: weights (use0 zeros for missing values)
|
|
1153 # d: order of differences in penalty (generally 2)
|
|
1154 m <- length(y)
|
|
1155 W <- Matrix::Diagonal(x=w)
|
|
1156 E <- Matrix::Diagonal(m)
|
|
1157 D <- Matrix::diff(E, differences = d)
|
|
1158 C <- Matrix::chol(W + lambda * t(D) %*% D)
|
|
1159 x <- Matrix::solve(C, Matrix::solve(t(C), w * y))
|
|
1160 return(as.numeric(x))
|
|
1161
|
|
1162 }
|
|
1163 asysm <- function(y, lambda, p, eps, exclude_index) {
|
|
1164 # Baseline estimation with asymmetric least squares
|
|
1165 # y: signal
|
|
1166 # lambda: smoothing parameter (generally 1e5 to 1e8)
|
|
1167 # p: asymmetry parameter (generally 0.001)
|
|
1168 # d: order of differences in penalty (generally 2)
|
|
1169 # eps: 1e-8 in ptw package
|
|
1170 m <- length(y)
|
|
1171 w <- rep(1, m)
|
|
1172 i <- 1
|
|
1173 repeat {
|
|
1174 z <- difsmw(y, lambda, w, d = 2)
|
|
1175 w0 <- w
|
|
1176 p_vect <- rep((1-p), m) # if y <= z + eps
|
|
1177 p_vect[y > z + eps | y < 0] <- p # if y > z + eps | y < 0
|
|
1178 if(!is.null(exclude_index)){
|
|
1179 p_vect[exclude_index] <- 0 # if exclude area
|
|
1180 }
|
|
1181
|
|
1182 w <- p_vect
|
|
1183 # w <- p * (y > z + eps | y < 0) + (1 - p) * (y <= z + eps)
|
|
1184
|
|
1185 if (sum(abs(w - w0)) == 0) {
|
|
1186 break
|
|
1187 }
|
|
1188 i <- i + 1
|
|
1189 if (i > maxIter) {
|
|
1190 warning("cannot find Baseline estimation in asysm")
|
|
1191 break
|
|
1192 }
|
|
1193 }
|
|
1194 return(z)
|
|
1195 }
|
|
1196 }
|
|
1197
|
|
1198 # Baseline estimation ----------------------------------------------
|
|
1199 Baseline <- matrix(NA, nrow = nrow(Spectrum_data), ncol = ncol(Spectrum_data))
|
|
1200
|
|
1201 # for (k in 1:n) {
|
|
1202 # Baseline[k, ] <- asysm(y = Spectrum_data[k, ], lambda = lambda, p = p, eps = eps)
|
|
1203
|
|
1204 if (ptw.bc ){
|
|
1205 Baseline <- apply(Spectrum_data,1, asysm, lambda = lambda, p = p,
|
|
1206 eps = eps)
|
|
1207 }else {
|
|
1208 Baseline <- apply(Spectrum_data,1, asysm, lambda = lambda, p = p,
|
|
1209 eps = eps, exclude_index = exclude_index)
|
|
1210 }
|
|
1211
|
|
1212
|
|
1213 Spectrum_data <- Spectrum_data - t(Baseline)
|
|
1214 # }
|
|
1215
|
|
1216 # Data finalisation ----------------------------------------------
|
|
1217 Spectrum_data <- endTreatment("BaselineCorrection", begin_info, Spectrum_data) # FIXME create removeImaginary filter ??
|
|
1218
|
|
1219 if (returnBaseline) {
|
|
1220 return(list(Spectrum_data = Spectrum_data, Baseline = Baseline))
|
|
1221 } else {
|
|
1222 return(Spectrum_data)
|
|
1223 }
|
|
1224 }
|
|
1225
|
|
1226
|
|
1227
|
|
1228 ## ====================================================
|
|
1229 # NegativeValuesZeroing
|
|
1230 ## ====================================================
|
|
1231
|
|
1232 NegativeValuesZeroing <- function(Spectrum_data) {
|
|
1233 # Data initialisation and checks ----------------------------------------------
|
|
1234 begin_info <- beginTreatment("NegativeValuesZeroing", Spectrum_data, force.real = T)
|
|
1235 Spectrum_data <- begin_info[["Signal_data"]]
|
|
1236
|
|
1237 # NegativeValuesZeroing ----------------------------------------------
|
|
1238 Spectrum_data[Spectrum_data < 0] <- 0
|
|
1239
|
|
1240 # Data finalisation ----------------------------------------------
|
|
1241 return(endTreatment("NegativeValuesZeroing", begin_info, Spectrum_data))
|
|
1242 }
|
|
1243
|
|
1244
|