Mercurial > repos > marie-tremblay-metatoul > normalization
view NmrNormalization_script.R @ 3:966fcf7ae66e draft
planemo upload for repository https://github.com/workflow4metabolomics/normalization commit 9ca88a22e9b9394bfa00ea383fbb2b78ef05f990
author | lecorguille |
---|---|
date | Thu, 26 Oct 2017 06:01:14 -0400 |
parents | |
children | 221cbd549c40 |
line wrap: on
line source
################################################################################################################# # SPECTRA NORMALIZATION FROM SPECTRAL DATA # # User : Galaxy # # Original data : -- # # Starting date : 20-10-2014 # # Version 1 : 27-01-2015 # # Version 2 : 27-02-2015 # # # # Input files: # # - Data matrix containing bucketed and integrated spectra to normalize # # - Sample metadata matrix containing at least biological factor of interest # # - Scaling method: Total intensity/Probabilistic Quotient Normalization # # - Control group: name of control to compute median reference spectra # # - Graph: normalization result representation # ################################################################################################################# NmrNormalization <- function(dataMatrix,scalingMethod=c("None","Total","PQN","BioFactor"),sampleMetadata=NULL, bioFactor=NULL,ControlGroup=NULL,graph=c("None","Overlay","One_per_individual"), nomFichier=NULL,savLog.txtC=NULL) { ## Option ##--------------- strAsFacL <- options()$stringsAsFactors options(stingsAsFactors = FALSE) options(warn = -1) ## Constants ##--------------- topEnvC <- environment() flgC <- "\n" ## Log file (in case of integration into Galaxy) ##---------------------------------------------- if(!is.null(savLog.txtC)) sink(savLog.txtC, append = TRUE) ## Functions definition ##--------------------- ################################################################################################################# # Total intensity normalization # Input parameters # - data : bucketed spectra (rows=buckets; columns=samples) ################################################################################################################# NmrBrucker_total <- function(data) { # Total intensity normalization data.total <- apply(data,2,sum) data.normalized <- data[,1]/data.total[1] for (i in 2:ncol(data)) data.normalized <- cbind(data.normalized,data[,i]/data.total[i]) colnames(data.normalized) <- colnames(data) rownames(data.normalized) <- rownames(data) return(data.normalized) } ################################################################################################################# # Biological factor normalization # Input parameters # - data : bucketed spectra (rows=buckets; columns=samples) # - sampleMetadata : dataframe with biological factor of interest measured for each invidual # - bioFactor : name of the column cotaining the biological factor of interest ################################################################################################################# NmrBrucker_bioFact <- function(data,sampleMetadata,bioFactor) { # Total intensity normalization data.normalized <- data[,1]/bioFactor[1] for (i in 2:ncol(data)) data.normalized <- cbind(data.normalized,data[,i]/bioFactor[i]) colnames(data.normalized) <- colnames(data) rownames(data.normalized) <- rownames(data) return(data.normalized) } ################################################################################################################# # Probabilistic quotient normalization (PQN) # Input parameters # - data : bucketed spectra (rows=buckets; columns=samples) # - sampleMetadata : dataframe with treatment group of inviduals # - pqnFactor : number of the column cotaining the biological facor of interest # - nomControl : name of the treatment group ################################################################################################################# NmrBrucker_pqn <- function(data,sampleMetadata,pqnFactor,nomControl) { # Total intensity normalization data.total <- apply(data,2,sum) data.normalized <- data[,1]/data.total[1] for (i in 2:ncol(data)) data.normalized <- cbind(data.normalized,data[,i]/data.total[i]) colnames(data.normalized) <- colnames(data) rownames(data.normalized) <- rownames(data) # Reference spectrum # Recuperation spectres individus controle control.spectra <- data.normalized[,sampleMetadata[,pqnFactor]==nomControl] spectrum.ref <- apply(control.spectra,1,median) # Ratio between normalized and reference spectra data.normalized.ref <- data.normalized/spectrum.ref # Median ratio data.normalized.ref.median <- apply(data.normalized.ref,1,median) # Normalization data.normalizedPQN <- data.normalized[,1]/data.normalized.ref.median for (i in 2:ncol(data)) data.normalizedPQN <- cbind(data.normalizedPQN,data.normalized[,i]/data.normalized.ref.median) colnames(data.normalizedPQN) <- colnames(data) rownames(data.normalizedPQN) <- rownames(data) return(data.normalizedPQN) } ## Tests if (scalingMethod=="QuantitativeVariable") { if(mode(sampleMetadata[,bioFactor]) == "character") bioFact <- factor(sampleMetadata[,bioFactor]) else bioFact <- sampleMetadata[,bioFactor] } ## Spectra scaling depending on the user choice if (scalingMethod == "None") { NormalizedBucketedSpectra <- dataMatrix } else if (scalingMethod == "Total") { NormalizedBucketedSpectra <- NmrBrucker_total(dataMatrix) } else if (scalingMethod == "PQN") { NormalizedBucketedSpectra <- NmrBrucker_pqn(dataMatrix,sampleMetadata,bioFactor,ControlGroup) } else if (scalingMethod == "QuantitativeVariable") { NormalizedBucketedSpectra <- NmrBrucker_bioFact(dataMatrix,sampleMetadata,bioFact) } ## OUTPUTS return(list(NormalizedBucketedSpectra)) }