Mercurial > repos > mbernt > baseline_toxicity_calculator
comparison qsar1.py @ 0:ce46f2008024 draft default tip
planemo upload for repository https://github.com/bernt-matthias/mb-galaxy-tools/tools/tox_tools/baseline_calculator commit 008f820fb9b8ec547e00205f809f982b8f4b8318
author | mbernt |
---|---|
date | Tue, 09 Apr 2024 07:51:18 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:ce46f2008024 |
---|---|
1 import argparse | |
2 import re | |
3 | |
4 import pandas as pd | |
5 | |
6 parser = argparse.ArgumentParser(description='Calculate baseline toxicity for different aquatic species') | |
7 parser.add_argument('--function', type=str, choices=['calculate_baseline', 'apply_linear_functions'], | |
8 help='Function to execute') | |
9 parser.add_argument('--csv_input', type=argparse.FileType('r'), help='Path to the input csv file') | |
10 parser.add_argument('--functions_csv', type=argparse.FileType('r'), default=None, | |
11 help='Path to the csv file containing functions (only for apply_linear_functions)') | |
12 parser.add_argument('--output', type=argparse.FileType('w'), help='Path for the output csv file') | |
13 args = parser.parse_args() | |
14 | |
15 if args.function == 'calculate_baseline': | |
16 df = pd.read_csv(args.csv_input) | |
17 df.iloc[:, 0] = df.iloc[:, 0].astype(int) | |
18 df['Caenorhabditis elegans [mol/L]'] = 10 ** (-(0.81 * df.iloc[:, 0] + 1.15)) | |
19 df['Daphia magna [mol/L]'] = 10 ** (-(0.82 * df.iloc[:, 0] + 1.48)) | |
20 df['Danio rerio [mol/L]'] = 10 ** (-(0.99 * df.iloc[:, 0] + 0.78)) | |
21 df['Generic Human Cells [mol/L]'] = 0.026 / (10 ** df.iloc[:, 0]) * (1 + 10 ** (0.7 * df.iloc[:, 0] + 0.34) * 3 * 0.001 + 10 ** 3 * 0.07 * 0.001) | |
22 df.to_csv(args.output, index=False) | |
23 | |
24 elif args.function == 'apply_linear_functions': | |
25 df = pd.read_csv(args.csv_input) | |
26 functions_df = pd.read_csv(args.functions_csv) | |
27 | |
28 def parse_and_apply_equation(equation, x_values): | |
29 # Extract 'a' and 'b' from the equation (assuming the format 'ax+b' or 'ax-b') | |
30 pattern = re.compile(r'([+-]?\d*\.?\d*)x([+-]\d+)?') | |
31 match = pattern.search(equation) | |
32 a = float(match.group(1)) if match.group(1) not in ('', '+', '-') else 1.0 | |
33 b = float(match.group(2)) if match.group(2) else 0 | |
34 return a * x_values + b | |
35 | |
36 for i, row in functions_df.iterrows(): | |
37 func = row['function'] | |
38 df[f'result_{i}'] = parse_and_apply_equation(func, df['logD']) | |
39 df.to_csv(args.output, index=False) |