comparison qsar1.py @ 0:ce46f2008024 draft default tip

planemo upload for repository https://github.com/bernt-matthias/mb-galaxy-tools/tools/tox_tools/baseline_calculator commit 008f820fb9b8ec547e00205f809f982b8f4b8318
author mbernt
date Tue, 09 Apr 2024 07:51:18 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:ce46f2008024
1 import argparse
2 import re
3
4 import pandas as pd
5
6 parser = argparse.ArgumentParser(description='Calculate baseline toxicity for different aquatic species')
7 parser.add_argument('--function', type=str, choices=['calculate_baseline', 'apply_linear_functions'],
8 help='Function to execute')
9 parser.add_argument('--csv_input', type=argparse.FileType('r'), help='Path to the input csv file')
10 parser.add_argument('--functions_csv', type=argparse.FileType('r'), default=None,
11 help='Path to the csv file containing functions (only for apply_linear_functions)')
12 parser.add_argument('--output', type=argparse.FileType('w'), help='Path for the output csv file')
13 args = parser.parse_args()
14
15 if args.function == 'calculate_baseline':
16 df = pd.read_csv(args.csv_input)
17 df.iloc[:, 0] = df.iloc[:, 0].astype(int)
18 df['Caenorhabditis elegans [mol/L]'] = 10 ** (-(0.81 * df.iloc[:, 0] + 1.15))
19 df['Daphia magna [mol/L]'] = 10 ** (-(0.82 * df.iloc[:, 0] + 1.48))
20 df['Danio rerio [mol/L]'] = 10 ** (-(0.99 * df.iloc[:, 0] + 0.78))
21 df['Generic Human Cells [mol/L]'] = 0.026 / (10 ** df.iloc[:, 0]) * (1 + 10 ** (0.7 * df.iloc[:, 0] + 0.34) * 3 * 0.001 + 10 ** 3 * 0.07 * 0.001)
22 df.to_csv(args.output, index=False)
23
24 elif args.function == 'apply_linear_functions':
25 df = pd.read_csv(args.csv_input)
26 functions_df = pd.read_csv(args.functions_csv)
27
28 def parse_and_apply_equation(equation, x_values):
29 # Extract 'a' and 'b' from the equation (assuming the format 'ax+b' or 'ax-b')
30 pattern = re.compile(r'([+-]?\d*\.?\d*)x([+-]\d+)?')
31 match = pattern.search(equation)
32 a = float(match.group(1)) if match.group(1) not in ('', '+', '-') else 1.0
33 b = float(match.group(2)) if match.group(2) else 0
34 return a * x_values + b
35
36 for i, row in functions_df.iterrows():
37 func = row['function']
38 df[f'result_{i}'] = parse_and_apply_equation(func, df['logD'])
39 df.to_csv(args.output, index=False)