comparison Matrix_Validate_import.py @ 1:f1bcd79cd923 draft default tip

Uploaded
author insilico-bob
date Tue, 27 Nov 2018 14:20:40 -0500
parents
children
comparison
equal deleted inserted replaced
0:7f12c81e2083 1:f1bcd79cd923
1 '''
2 Created on Jun 7, 2017 modified Feb2018
3
4 @author: cjacoby and Bob Brown
5 '''
6
7 import sys, traceback, argparse
8 import numpy as np
9 import os
10 #import matplotlib.pyplot as plt
11 #import matplotlib.pyplot as plt; plt.rcdefaults()
12
13 # Define the Reading Function Which Pulls the Data from a .txt file
14 def reader(input_file_txt, create_plot= False):
15 #Read Matrix, Preserving String Values for Headers first row and first column (both minus first cell)
16 #Read Matrix, Converting all values to Float for Data Processing
17
18 f = open(input_file_txt, "rU")
19
20 #print( 'Valid NAN identifiers are: empty cells, cells with blanks,"NA","N/A","-", and "?"')
21
22 column_labels = []
23 row_labels = []
24 matrix = []
25 firstLine= True
26
27 line = f.readline()
28
29 # "NA","N/A","-","?","NAN","NaN","Na","na","n/a","null",EMPTY/Null, SPACE (blank char)
30
31 nanList = ["", " ","NAN", "NA", "N/A", "-","?"]
32 binCatDict = {"":0, " ":0, "Text":0, "NA":0, "-":0,"NAN":0, "N/A":0,"?":0}
33 row = 0
34 nanCnt = 0
35 nonNumCnt = 0
36
37 while line:
38 line = line.strip("\n")
39 line = line.split('\t')
40
41 row += 1
42
43 if firstLine:
44 lengthRow = len(line)
45 column_labels = line[1:]
46 else:
47 if lengthRow != len(line):
48 # print("\nERROR matrix row lengths unequal for row 0 and row "+str(row)+"\n" )
49 sys.exit(-1)
50
51 temp = []
52 # column= 0
53 row_labels.append(str(line[0]))
54
55 #for item in line[1:]: use enumerate
56 for column, item in enumerate(line[1:],1):
57 # column += 1
58 try:
59 temp.append(float(item))
60 except ValueError:
61 temp.append(np.nan)
62 itemUC= item.upper()
63
64 if itemUC in nanList:
65 nanCnt += 1
66 binCatDict[itemUC]= binCatDict[itemUC]+1
67 # print( 'Legit nans= ',str(item))
68 else:
69 if nonNumCnt == 0: sys.stderr.write("Start List of up to first 50 Invalid cell values \n")
70 nonNumCnt +=1
71 if nonNumCnt < 50: sys.stderr.write("At row_column= "+str(row)+"_"+str(column)+' invalid data cell value '+ item+"\n")
72
73 matrix.append(temp)
74
75 line = f.readline()
76 firstLine= False
77
78 #sys.stdout.write("\n\n")
79 f.close()
80 binCatDict["Text"]= nonNumCnt
81
82 # plot results of NAN counts above
83
84 binCat = ["null", "blank", 'hyphen', '?','NA','N/A' ,'NAN', 'text']
85 orderDict= {0:"", 1:"", 2:'-', 3:'?',4:'NA', 5:'N/A' ,6:'NAN', 7:'Text'}
86 #TODO verify dict orde for data
87 #print("> key value =",key, str(value))
88
89 if create_plot:
90 numBins = len(binCat)
91 binWidth = 1
92 bins = []
93 binData = []
94
95 for key in sorted(orderDict):
96 value= binCatDict[orderDict[key]] # place items on chart in order and with data value for item
97 if value < 1:
98 binData.append(value+0.01)
99 else:
100 binData.append(value)
101
102 #"""
103 for j in range(numBins):
104 bins.append(j*binWidth)
105 #ttps://pythonspot.com/matplotlib-bar-chart/
106 y_pos = np.arange(numBins)
107 plt.yticks(y_pos, binCat)
108 plt.title("Distribution of NAN types (UPPER & lower & MiXeD case combined)")
109 plt.ylabel('NAN Types')
110 plt.xlabel('Occurrences')
111 #plt.legend()
112 plt.barh(y_pos, binData, align='center', alpha=0.5)
113
114 fig, ax = plt.subplots(num=1, figsize=(8,3))
115 ax.set_title("Data Cell Counts of Not A Number (NAN) Types")
116 #ax.bar(center,bins, align='center', width=width)
117 #ax.bar(center, hist, align='center', width=width)
118 #ax.set_xticks(bins)
119 # fig.savefig("/Users/bobbrown/Desktop/Matrix-tools-Test-output/NAN-plot.png")
120
121 # fig, ax = plt.subplots(num=1, figsize=(8,3))
122 # fig.savefig("/Users/bobbrown/Desktop/Matrix-tools-Test-output/hist-out.png")
123
124 plt.show()
125 #"""
126
127 #after plot error?
128 x,y=np.shape(matrix)
129 if nanCnt > 0: print("WARNING -- Found "+str(nanCnt)+" Valid Non-numbers. Their percent of total matrix data cell values = "+str((100*nanCnt)/(x*y))+"% ")
130 if nonNumCnt > 0: sys.exit(-1)
131 #print ("reader output:")
132 #print (matrix)
133 #print (column_labels)
134 #print(row_labels)
135 return matrix,column_labels,row_labels
136
137 #----------------------------------------------------------------------
138 # Verify Matrix A column_labels match Matrix B row_labels in name and order for A*B
139 def MatchLabels(column_labels,row_labels):
140
141 if len(column_labels) != len(row_labels):
142 sys.err("ERROR 1st matrix column count "+str(len(column_labels))+" not equal 2nd Matrix number row count "+str(len(row_labels))+"\n" )
143 else:
144 cnt= 0
145 for k in range(0,len(column_labels)):
146 if column_labels[k] != row_labels[k] and cnt < 20:
147 cnt += 1
148 #sys.err("ERROR At column & row position "+str(k)+" Matrix 1 column value "+str(column_labels)+" not equal 2nd Matrix row value "+str(row_labels)+"\n" )
149
150 if cnt > 0:
151 sys.exit(-11)
152 #----------------------------------------------------------------------
153 # restores row and column labels in ouput
154 def Labeler(matrix,column_labels,row_labels,output_file_txt):
155 #print("matrix length: " + str(len(matrix)))
156 #print("row labels length: " + str(len(row_labels)))
157 #print("col labels length: " +str(len(column_labels)))
158 #Define Null Sets For Col and Row Headers
159 with open(output_file_txt,'w') as f:
160 f.write("")
161 for k in range(0,len(column_labels)):
162 f.write('\t' + str(column_labels[k]) )
163 f.write('\n')
164 #for i in range(0,len(row_labels)):
165 for i in range(0,len(matrix)):
166 f.write(str(row_labels[i]) )
167 #print("matrix["+str(i)+"] length:" + str(len(matrix[i])))
168 for j in range(0,len(matrix[0])):
169 f.write('\t' + format(matrix[i][j]))
170 f.write('\n')
171
172
173 #----------------------------------------------------------------------
174 if __name__ == '__main__':
175 input_file_txt = str(sys.argv[1])
176
177 matrix,column_labels,row_labels = reader(input_file_txt)
178 print("Done")
179