Mercurial > repos > md-anderson-bioinformatics > matrix_manipulation
comparison Matrix_Validate_import.py @ 1:f1bcd79cd923 draft default tip
Uploaded
author | insilico-bob |
---|---|
date | Tue, 27 Nov 2018 14:20:40 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
0:7f12c81e2083 | 1:f1bcd79cd923 |
---|---|
1 ''' | |
2 Created on Jun 7, 2017 modified Feb2018 | |
3 | |
4 @author: cjacoby and Bob Brown | |
5 ''' | |
6 | |
7 import sys, traceback, argparse | |
8 import numpy as np | |
9 import os | |
10 #import matplotlib.pyplot as plt | |
11 #import matplotlib.pyplot as plt; plt.rcdefaults() | |
12 | |
13 # Define the Reading Function Which Pulls the Data from a .txt file | |
14 def reader(input_file_txt, create_plot= False): | |
15 #Read Matrix, Preserving String Values for Headers first row and first column (both minus first cell) | |
16 #Read Matrix, Converting all values to Float for Data Processing | |
17 | |
18 f = open(input_file_txt, "rU") | |
19 | |
20 #print( 'Valid NAN identifiers are: empty cells, cells with blanks,"NA","N/A","-", and "?"') | |
21 | |
22 column_labels = [] | |
23 row_labels = [] | |
24 matrix = [] | |
25 firstLine= True | |
26 | |
27 line = f.readline() | |
28 | |
29 # "NA","N/A","-","?","NAN","NaN","Na","na","n/a","null",EMPTY/Null, SPACE (blank char) | |
30 | |
31 nanList = ["", " ","NAN", "NA", "N/A", "-","?"] | |
32 binCatDict = {"":0, " ":0, "Text":0, "NA":0, "-":0,"NAN":0, "N/A":0,"?":0} | |
33 row = 0 | |
34 nanCnt = 0 | |
35 nonNumCnt = 0 | |
36 | |
37 while line: | |
38 line = line.strip("\n") | |
39 line = line.split('\t') | |
40 | |
41 row += 1 | |
42 | |
43 if firstLine: | |
44 lengthRow = len(line) | |
45 column_labels = line[1:] | |
46 else: | |
47 if lengthRow != len(line): | |
48 # print("\nERROR matrix row lengths unequal for row 0 and row "+str(row)+"\n" ) | |
49 sys.exit(-1) | |
50 | |
51 temp = [] | |
52 # column= 0 | |
53 row_labels.append(str(line[0])) | |
54 | |
55 #for item in line[1:]: use enumerate | |
56 for column, item in enumerate(line[1:],1): | |
57 # column += 1 | |
58 try: | |
59 temp.append(float(item)) | |
60 except ValueError: | |
61 temp.append(np.nan) | |
62 itemUC= item.upper() | |
63 | |
64 if itemUC in nanList: | |
65 nanCnt += 1 | |
66 binCatDict[itemUC]= binCatDict[itemUC]+1 | |
67 # print( 'Legit nans= ',str(item)) | |
68 else: | |
69 if nonNumCnt == 0: sys.stderr.write("Start List of up to first 50 Invalid cell values \n") | |
70 nonNumCnt +=1 | |
71 if nonNumCnt < 50: sys.stderr.write("At row_column= "+str(row)+"_"+str(column)+' invalid data cell value '+ item+"\n") | |
72 | |
73 matrix.append(temp) | |
74 | |
75 line = f.readline() | |
76 firstLine= False | |
77 | |
78 #sys.stdout.write("\n\n") | |
79 f.close() | |
80 binCatDict["Text"]= nonNumCnt | |
81 | |
82 # plot results of NAN counts above | |
83 | |
84 binCat = ["null", "blank", 'hyphen', '?','NA','N/A' ,'NAN', 'text'] | |
85 orderDict= {0:"", 1:"", 2:'-', 3:'?',4:'NA', 5:'N/A' ,6:'NAN', 7:'Text'} | |
86 #TODO verify dict orde for data | |
87 #print("> key value =",key, str(value)) | |
88 | |
89 if create_plot: | |
90 numBins = len(binCat) | |
91 binWidth = 1 | |
92 bins = [] | |
93 binData = [] | |
94 | |
95 for key in sorted(orderDict): | |
96 value= binCatDict[orderDict[key]] # place items on chart in order and with data value for item | |
97 if value < 1: | |
98 binData.append(value+0.01) | |
99 else: | |
100 binData.append(value) | |
101 | |
102 #""" | |
103 for j in range(numBins): | |
104 bins.append(j*binWidth) | |
105 #ttps://pythonspot.com/matplotlib-bar-chart/ | |
106 y_pos = np.arange(numBins) | |
107 plt.yticks(y_pos, binCat) | |
108 plt.title("Distribution of NAN types (UPPER & lower & MiXeD case combined)") | |
109 plt.ylabel('NAN Types') | |
110 plt.xlabel('Occurrences') | |
111 #plt.legend() | |
112 plt.barh(y_pos, binData, align='center', alpha=0.5) | |
113 | |
114 fig, ax = plt.subplots(num=1, figsize=(8,3)) | |
115 ax.set_title("Data Cell Counts of Not A Number (NAN) Types") | |
116 #ax.bar(center,bins, align='center', width=width) | |
117 #ax.bar(center, hist, align='center', width=width) | |
118 #ax.set_xticks(bins) | |
119 # fig.savefig("/Users/bobbrown/Desktop/Matrix-tools-Test-output/NAN-plot.png") | |
120 | |
121 # fig, ax = plt.subplots(num=1, figsize=(8,3)) | |
122 # fig.savefig("/Users/bobbrown/Desktop/Matrix-tools-Test-output/hist-out.png") | |
123 | |
124 plt.show() | |
125 #""" | |
126 | |
127 #after plot error? | |
128 x,y=np.shape(matrix) | |
129 if nanCnt > 0: print("WARNING -- Found "+str(nanCnt)+" Valid Non-numbers. Their percent of total matrix data cell values = "+str((100*nanCnt)/(x*y))+"% ") | |
130 if nonNumCnt > 0: sys.exit(-1) | |
131 #print ("reader output:") | |
132 #print (matrix) | |
133 #print (column_labels) | |
134 #print(row_labels) | |
135 return matrix,column_labels,row_labels | |
136 | |
137 #---------------------------------------------------------------------- | |
138 # Verify Matrix A column_labels match Matrix B row_labels in name and order for A*B | |
139 def MatchLabels(column_labels,row_labels): | |
140 | |
141 if len(column_labels) != len(row_labels): | |
142 sys.err("ERROR 1st matrix column count "+str(len(column_labels))+" not equal 2nd Matrix number row count "+str(len(row_labels))+"\n" ) | |
143 else: | |
144 cnt= 0 | |
145 for k in range(0,len(column_labels)): | |
146 if column_labels[k] != row_labels[k] and cnt < 20: | |
147 cnt += 1 | |
148 #sys.err("ERROR At column & row position "+str(k)+" Matrix 1 column value "+str(column_labels)+" not equal 2nd Matrix row value "+str(row_labels)+"\n" ) | |
149 | |
150 if cnt > 0: | |
151 sys.exit(-11) | |
152 #---------------------------------------------------------------------- | |
153 # restores row and column labels in ouput | |
154 def Labeler(matrix,column_labels,row_labels,output_file_txt): | |
155 #print("matrix length: " + str(len(matrix))) | |
156 #print("row labels length: " + str(len(row_labels))) | |
157 #print("col labels length: " +str(len(column_labels))) | |
158 #Define Null Sets For Col and Row Headers | |
159 with open(output_file_txt,'w') as f: | |
160 f.write("") | |
161 for k in range(0,len(column_labels)): | |
162 f.write('\t' + str(column_labels[k]) ) | |
163 f.write('\n') | |
164 #for i in range(0,len(row_labels)): | |
165 for i in range(0,len(matrix)): | |
166 f.write(str(row_labels[i]) ) | |
167 #print("matrix["+str(i)+"] length:" + str(len(matrix[i]))) | |
168 for j in range(0,len(matrix[0])): | |
169 f.write('\t' + format(matrix[i][j])) | |
170 f.write('\n') | |
171 | |
172 | |
173 #---------------------------------------------------------------------- | |
174 if __name__ == '__main__': | |
175 input_file_txt = str(sys.argv[1]) | |
176 | |
177 matrix,column_labels,row_labels = reader(input_file_txt) | |
178 print("Done") | |
179 |