Mercurial > repos > melpetera > batchcorrection
view batchcorrection-57edfd3943ab/Normalisation_QCpool.r @ 3:73892ef177e3 draft
Uploaded
author | melpetera |
---|---|
date | Tue, 02 May 2017 09:47:22 -0400 |
parents | |
children |
line wrap: on
line source
# Author: jfmartin # Modified by : mpetera ############################################################################### # Correction of analytical effects inter and intra batch on intensities using quality control pooled samples (QC-pools) # according to the algorithm mentioned by Van der Kloet (J Prot Res 2009). # Parameters : a dataframe of Ions intensities and an other of samples? metadata which must contains at least the three following columns : # "batch" to identify the batches of analyses ; need at least 3 QC-pools for linear adjustment and 8 for lo(w)ess adjustment # "injectionOrder" integer defining the injection order of all samples : QC-pools and analysed samples # "sampleType" indicates if defining a sample with "sample" or a QC-pool with "pool" # NO MISSING DATA are allowed # Version 0.91 insertion of ok_norm function to assess correction feasibility # Version 0.92 insertion of slope test in ok_norm # Version 0.93 name of log file define as a parameter of the correction function # Version 0.94 Within a batch, test if all QCpools or samples values = 0. Definition of an error code in ok_norm function (see function for details) # Version 0.99 include non linear lowess correction. # Version 1.00 the corrected result matrix is return transposed in Galaxy # Version 1.01 standard deviation=0 instead of sum of value=0 is used to assess constant data in ok_norm function. Negative values in corrected matrix are converted to 0. # Version 1.02 plotsituation create a result file with the error code of non execution of correction set by function ok_norm # Version 1.03 fix bug in plot with "reg" option. suppression of ok_norm=4 condition if ok_norm function # Version 2.00 Addition of loess function, correction indicator, plots ; modification of returned objects' format, some plots' displays and ok_norm ifelse format # Version 2.01 Correction for pools negative values earlier in norm_QCpool # Version 2.10 Script refreshing ; vocabulary adjustment ; span in parameters for lo(w)ess regression ; conditionning for third line ACP display ; order in loess display # Version 2.11 ok1 and ok2 permutation (ok_norm) ; conditional display of regression (plotsituation) ; grouping of linked lignes + conditioning (normX) ; conditioning for CVplot # Version 2.20 acplight function added from previous toolBox.R [# Version 1.01 "NA"-coding possibility added in acplight function] # Version 2.30 addition of suppressWarnings() for known and controlled warnings ; suppression of one useless "cat" message ; change in Rdata names ; 'batch(es)' in cat # Version 2.90 change in handling of generated negative and Inf values # Version 2.91 Plot improvement ok_norm=function(qcp,qci,spl,spi,method) { # Function used for one ion within one batch to determine whether or not batch correction is possible # ok_norm values : # 0 : no preliminary-condition problem # 1 : standard deviation of QC-pools or samples = 0 # 2 : insufficient number of QC-pools within a batch (n=3 for linear, n=8 for lowess or loess) # 3 : significant difference between QC-pools' and samples' means # 4 : denominator =0 when on 1 pool per batch <> 0 # 5 : (linear regression only) the slopes ratio ?QC-pools/samples? is lower than -0.2 ok=0 if (method=="linear") {minQC=3} else {minQC=8} if (length(qcp)<minQC) { ok=2 } else { if (sd(qcp)==0 | sd(spl)==0) { ok=1 } else { cvp= sd(qcp)/mean(qcp); cvs=sd(spl)/mean(spl) rttest=t.test(qcp,y=spl) reslsfit=lsfit(qci, qcp) reslsfitSample=lsfit(spl, spi) ordori=reslsfit$coefficients[1] penteB=reslsfit$coefficients[2] penteS=reslsfitSample$coefficients[2] # Significant difference between samples and pools if (rttest$p.value < 0.01) { ok=3 } else { # to avoid denominator =0 when on 1 pool per batch <> 0 if (method=="linear" & length(which(((penteB*qci)+ordori)==0))>0 ){ ok=6 } else { # different sloop between samples and pools if (method=="linear" & penteB/penteS < -0.20) { ok=5 } }}}} ok_norm=ok } plotsituation <- function (x, nbid,outfic="plot_regression.pdf", outres="PreNormSummary.txt",fact="batch",span="none") { # Check for all ions in every batch if linear or lo(w)ess correction is possible. # Use ok_norm function and create a file (PreNormSummary.txt) with the error code. # Also create a pdf file with plots of linear and lo(w)ess regression lines. # x: dataframe with ions in columns and samples in rows ; x is the result of concatenation of sample metadata file and ions file # nbid: number of samples description columns (id and factors) with at least : "batch","injectionOrder","sampleType" # outfic: name of regression plots pdf file # fact: factor to be used as categorical variable for plots and PCA. indfact =which(dimnames(x)[[2]]==fact) indtypsamp =which(dimnames(x)[[2]]=="sampleType") indbatch =which(dimnames(x)[[2]]=="batch") indinject =which(dimnames(x)[[2]]=="injectionOrder") lastIon=dim(x)[2] nbi=lastIon-nbid # Number of ions = total number of columns - number of identifying columns nbb=length(levels(x$batch)) # Number of batch = number of levels of "batch" comlumn (factor) nbs=length(x$sampleType[x$sampleType=="sample"])# Number of samples = number of rows with "sample" value in sampleType pdf(outfic,width=27,height=7*ceiling((nbb+2)/3)) cat(nbi," ions ",nbb," batch(es) \n") cv=data.frame(matrix(0,nrow=nbi,ncol=2))# initialisation de la dataset qui contiendra les CV pre_bilan=matrix(0,nrow=nbi,ncol=3*nbb) # dataset of ok_norm function results for (p in 1:nbi) {# for each ion par (mfrow=c(ceiling((nbb+2)/3),3),ask=F,cex=1.2) labion=dimnames(x)[[2]][p+nbid] indpool=which(x$sampleType=="pool") # QCpools subscripts in x pools1=x[indpool,p+nbid]; cv[p,1]=sd(pools1)/mean(pools1)# CV before correction for (b in 1:nbb) {# for each batch... xb=data.frame(x[(x$batch==levels(x$batch)[b]),c(indtypsamp,indinject,p+nbid)]) indpb = which(xb$sampleType=="pool")# QCpools subscripts in the current batch indsp = which(xb$sampleType=="sample")# samples subscripts in the current batch indbt = which(xb$sampleType=="sample" | xb$sampleType=="pool")# indices de tous les samples d'un batch pools+samples normLinearTest=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="linear") normLoessTest=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="loess") normLowessTest=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="lowess") #cat(dimnames(x)[[2]][p+nbid]," batch ",b," loess ",normLoessTest," linear ",normLinearTest,"\n") pre_bilan[ p,3*b-2]=normLinearTest pre_bilan[ p,3*b-1]=normLoessTest pre_bilan[ p,3*b]=normLowessTest if(length(indpb)>1){ if(span=="none"){span1<-1 ; span2<-2*length(indpool)/nbs}else{span1<-span ; span2<-span} resloess=loess(xb[indpb,3]~xb[indpb,2],span=span1,degree=2,family="gaussian",iterations=4,surface="direct") resloessSample=loess(xb[indsp,3]~xb[indsp,2],span=2*length(indpool)/nbs,degree=2,family="gaussian",iterations=4,surface="direct") reslowess=lowess(xb[indpb,2],xb[indpb,3],f=span2) reslowessSample=lowess(xb[indsp,2],xb[indsp,3]) liminf=min(xb[indbt,3]);limsup=max(xb[indbt,3]) plot(xb[indsp,2],xb[indsp,3],pch=16, main=paste(labion,"batch ",b),ylab="intensity",xlab="injection order",ylim=c(liminf,limsup)) points(xb[indpb,2], xb[indpb,3],pch=5) points(cbind(resloess$x,resloess$fitted)[order(resloess$x),],type="l",col="green3") points(cbind(resloessSample$x,resloessSample$fitted)[order(resloessSample$x),],type="l",col="green3",lty=2) points(reslowess,type="l",col="red"); points(reslowessSample,type="l",col="red",lty=2) abline(lsfit(xb[indpb,2],xb[indpb,3]),col="blue") abline(lsfit(xb[indsp,2],xb[indsp,3]),lty=2,col="blue") legend("topleft",c("pools","samples"),lty=c(1,2),bty="n") legend("topright",c("linear","lowess","loess"),lty=1,col=c("blue","red","green3"),bty="n") } } # series de plot avant et apres correction minval=min(x[p+nbid]);maxval=max(x[p+nbid]) plot( x$injectionOrder, x[,p+nbid],col=x$batch,ylim=c(minval,maxval),ylab=labion, main=paste0("before correction (CV for pools = ",round(cv[p,1],2),")")) suppressWarnings(plot.design( x[c(indtypsamp,indbatch,indfact,p+nbid)],main="factors effect before correction")) } dev.off() pre_bilan=data.frame(pre_bilan) labion=dimnames(x)[[2]][nbid+1:nbi] for (i in 1:nbb) { dimnames(pre_bilan)[[2]][3*i-2]=paste("batch",i,"linear") dimnames(pre_bilan)[[2]][3*i-1]=paste("batch",i,"loess") dimnames(pre_bilan)[[2]][3*i]=paste("batch",i,"lowess") } bilan=data.frame(labion,pre_bilan) write.table(bilan,file=outres,sep="\t",row.names=F,quote=F) } normlowess=function (xb,detail="no",vref=1,b,span=NULL) { # Correction function applied to 1 ion in 1 batch. Use a lowess regression computed on QC-pools in order to correct samples intensity values # xb : dataframe for 1 ion in columns and samples in rows. # vref : reference value (average of ion) # b : batch subscript # nbid: number of samples description columns (id and factors) with at least : "batch","injectionOrder","sampleType" indpb = which(xb$sampleType=="pool") # pools subscripts of current batch indsp = which(xb$sampleType=="sample") # samples of current batch subscripts indbt = which(xb$sampleType=="sample" | xb$sampleType=="pool");# batch subscripts of all samples and QC-pools labion=dimnames(xb)[[2]][3] newval=xb[[3]] # initialisation of corrected values = intial values ind <- 0 # initialisation of correction indicator normTodo=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="lowess") #cat("batch:",b," dim xb=",dim(xb)," ok=",normTodo,"\n") if (normTodo==0) { if(length(span)==0){span2<-2*length(indpb)/length(indsp)}else{span2<-span} reslowess=lowess(xb[indpb,2],xb[indpb,3],f=span2) # lowess regression with QC-pools px=xb[indsp,2]; # vector of injectionOrder values only for samples for(j in 1:length(indbt)) { if (xb$sampleType[j]=="pool") { if (reslowess$y[which(indpb==j)]==0) reslowess$y[which(indpb==j)] <- 1 newval[j]=(vref*xb[j,3]) / (reslowess$y[which(indpb==j)])} else { # for samples, the correction value cor correspond to the nearest QCpools cor= reslowess$y[which(abs(reslowess$x-px[which(indsp==j)])==min(abs(reslowess$x - px[which(indsp==j)])))] if (length(cor)>1) {cor=cor[1]} if (cor <= 0) {cor=vref} # no modification of initial value newval[j]=(vref*xb[j,3]) / cor } } if (detail=="reg") { liminf=min(xb[indbt,3]);limsup=max(xb[indbt,3]) plot(xb[indsp,2],xb[indsp,3],pch=16,main=paste(labion,"batch ",b),ylab="intensity",xlab="injection order",ylim=c(liminf,limsup)) points(xb[indpb,2], xb[indpb,3],pch=5) points(reslowess,type="l",col="red") } ind <- 1 } else {# if ok_norm <> 0 , we perform a correction based on batch samples average moySample=mean(xb[indsp,3]);if (moySample==0) moySample=1 newval[indsp] = (vref*xb[indsp,3])/moySample if(length(indpb)>0){ moypool=mean(xb[indpb,3]) ; if (moypool==0) moypool=1 newval[indpb] = (vref*xb[indpb,3])/moypool } } newval <- list(norm.ion=newval,norm.ind=ind) return(newval) } normlinear <- function (xb,detail="no",vref=1,b,valneg=0) { # Correction function applied to 1 ion in 1 batch. # Use a linear regression computed on QC-pools in order to correct samples intensity values # xb: dataframe with ions in columns and samples in rows; x is a result of concatenation of sample metadata file and ion file # nbid: number of sample description columns (id and factors) with at least "batch", "injectionOrder" and "sampleType" # b: which batch it is # valneg: to determine what to do with generated negative and Inf values indpb = which(xb$sampleType=="pool")# pools subscripts of current batch indsp = which(xb$sampleType=="sample")# samples of current batch subscripts indbt = which(xb$sampleType=="sample" | xb$sampleType=="pool") # QCpools and samples of current batch subscripts labion=dimnames(xb)[[2]][3] newval=xb[[3]] # initialisation of corrected values = intial values ind <- 0 # initialisation of correction indicator normTodo=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="linear") if (normTodo==0) { ind <- 1 reslsfit=lsfit(xb[indpb,2],xb[indpb,3]) # linear regression for QCpools reslsfitSample=lsfit(xb[indsp,2],xb[indsp,3]) # linear regression for samples ordori=reslsfit$coefficients[1] pente=reslsfit$coefficients[2] if (detail=="reg") { liminf=min(xb[indbt,3]);limsup=max(xb[indbt,3]) plot(xb[indsp,2],xb[indsp,3],pch=16, main=paste(labion,"batch ",b),ylab="intensity",xlab="injection order",ylim=c(liminf,limsup)) points(xb[indpb,2], xb[indpb,3],pch=5) abline(reslsfit) abline(reslsfitSample,lty=2) } # correction with rescaling of ion global intensity (vref) newval = (vref*xb[indbt,3]) / (pente * (xb[indbt,2]) + ordori) newval[which((pente * (xb[indbt,2]) + ordori)<1)] <- -1 # to handle cases where 0<denominator<1 # handling if any negative values (or null denominators) if(length(which((newval==Inf)|(newval<0)))!=0){ toajust <- which((newval==Inf)|(newval<0)) if(valneg=="NA"){ newval[toajust] <- NA } else { newval[toajust] <- vref * (xb[indbt,3][toajust]) / mean(xb[indbt,3]) ### Other possibility ## if(pente>0){ # slope orientation ## newval[toajust]<-(vref*(xb[indbt,3][toajust]))/(pente*ceiling(-ordori/pente+1.00001)+ordori) ## }else{ ## newval[toajust]<-(vref*(xb[indbt,3][toajust]))/(pente*floor(-ordori/pente-1.00001)+ordori) ## } } } } else {# if ok_norm!=0 , we perform a correction based on batch samples average. moySample=mean(xb[indsp,3]); if (moySample==0) moySample=1 newval[indsp] = (vref*xb[indsp,3])/moySample if(length(indpb)>0){ moypool=mean(xb[indpb,3]) ; if (moypool==0) moypool=1 newval[indpb] = (vref*xb[indpb,3])/moypool } } newval <- list(norm.ion=newval,norm.ind=ind) return(newval) } normloess <- function (xb,detail="no",vref=1,b,span=NULL) { # Correction function applied to 1 ion in 1 batch. # Use a loess regression computed on QC-pools in order to correct samples intensity values. # xb : dataframe for 1 ion in columns and samples in rows. # detail : level of detail in the outlog file. # vref : reference value (average of ion) # b : batch subscript indpb = which(xb$sampleType=="pool") # pools subscripts of current batch indsp = which(xb$sampleType=="sample") # samples of current batch subscripts indbt = which(xb$sampleType=="sample" | xb$sampleType=="pool");# batch subscripts of all samples and QCpools labion=dimnames(xb)[[2]][3] newval=xb[[3]] # initialisation of corrected values = intial values ind <- 0 # initialisation of correction indicator normTodo=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="loess") #cat("batch:",b," dim xb=",dim(xb)," ok=",normTodo,"\n") if (normTodo==0) { if(length(span)==0){span1<-1}else{span1<-span} resloess=loess(xb[indpb,3]~xb[indpb,2],span=span1,degree=2,family="gaussian",iterations=4,surface="direct") # loess regression with QCpools cor=predict(resloess,newdata=xb[,2]) cor[cor<=1] <- 1 newval=(vref*xb[,3]) / cor if(length(which(newval>3*(quantile(newval)[4])))>0){ # in this case no modification of initial value newval <- xb[,3]} else {ind <- 1} # confirmation of correction if ((detail=="reg")&(ind==1)) { # plot liminf=min(xb[indbt,3]);limsup=max(xb[indbt,3]) plot(xb[indsp,2],xb[indsp,3],pch=16,main=paste(labion,"batch ",b),ylab="intensity",xlab="injection order",ylim=c(liminf,limsup)) points(xb[indpb,2], xb[indpb,3],pch=5) points(cbind(resloess$x,resloess$fitted)[order(resloess$x),],type="l",col="red") } } if (ind==0) {# if ok_norm != 0 or if correction creates outliers, we perform a correction based on batch samples average moySample=mean(xb[indsp,3]);if (moySample==0) moySample=1 newval[indsp] = (vref*xb[indsp,3])/moySample if(length(indpb)>0){ moypool=mean(xb[indpb,3]) ; if (moypool==0) moypool=1 newval[indpb] = (vref*xb[indpb,3])/moypool } } newval <- list(norm.ion=newval,norm.ind=ind) return(newval) } norm_QCpool <- function (x, nbid, outlog, fact, metaion, detail="no", NormMoyPool=F, NormInt=F, method="linear",span="none",valNull="0") { ### Correction applying linear or lo(w)ess correction function on all ions for every batch of a dataframe. # x: dataframe with ions in column and samples' metadata # nbid: number of sample description columns (id and factors) with at least "batch", "injectionOrder", "sampleType" # outlog: name of regression plots and PCA pdf file # fact: factor to be used as categorical variable for plots # metaion: dataframe of ions' metadata # detail: level of detail in the outlog file. detail="no" ACP + boxplot of CV before and after correction. # detail="plot" with plot for all batch before and after correction. # detail="reg" with added plots with regression lines for all batches. # NormMoyPool: not used # NormInt: not used # method: regression method to be used to correct : "linear" or "lowess" or "loess" # valNull: to determine what to do with negatively estimated intensities indfact =which(dimnames(x)[[2]]==fact) indtypsamp=which(dimnames(x)[[2]]=="sampleType") indbatch =which(dimnames(x)[[2]]=="batch") indinject =which(dimnames(x)[[2]]=="injectionOrder") lastIon=dim(x)[2] valref=apply(as.matrix(x[,(nbid+1):(lastIon)]),2,mean) # reference value for each ion used to still have the same rought size of values nbi=lastIon-nbid # number of ions nbb=length(levels(x$batch)) # Number of batch(es) = number of levels of factor "batch" (can be =1) nbs=length(x$sampleType[x$sampleType=="sample"])# Number of samples nbp=length(x$sampleType[x$sampleType=="pool"])# Number of QCpools Xn=data.frame(x[,c(1:nbid)],matrix(0,nrow=nbp+nbs,ncol=nbi))# initialisation of the corrected dataframe (=initial dataframe) dimnames(Xn)=dimnames(x) cv=data.frame(matrix(0,nrow=nbi,ncol=2))# initialisation of dataframe containing CV before and after correction dimnames(cv)[[2]]=c("avant","apres") if (detail!="reg" && detail!="plot" && detail!="no") {detail="no"} pdf(outlog,width=27,height=20) cat(nbi," ions ",nbb," batch(es) \n") if (detail=="plot") {if(nbb<6){par(mfrow=c(3,3),ask=F,cex=1.5)}else{par(mfrow=c(4,4),ask=F,cex=1.5)}} res.ind <- matrix(NA,ncol=nbb,nrow=nbi,dimnames=list(dimnames(x)[[2]][-c(1:nbid)],paste("norm.b",1:nbb,sep=""))) for (p in 1:nbi) {# for each ion labion=dimnames(x)[[2]][p+nbid] if (detail == "reg") {if(nbb<6){par(mfrow=c(3,3),ask=F,cex=1.5)}else{par(mfrow=c(4,4),ask=F,cex=1.5)}} indpool=which(x$sampleType=="pool")# QCpools subscripts in all batches pools1=x[indpool,p+nbid]; cv[p,1]=sd(pools1)/mean(pools1)# CV before correction for (b in 1:nbb) {# for every batch indpb = which(x$batch==levels(x$batch)[b] & x$sampleType=="pool")# QCpools subscripts of the current batch indsp = which(x$batch==levels(x$batch)[b] & x$sampleType=="sample")# samples subscripts of the current batch indbt = which(x$batch==levels(x$batch)[b] & (x$sampleType=="pool" | x$sampleType=="sample")) # subscripts of all samples # cat(dimnames(x)[[2]][p+nbid]," indsp:",length(indsp)," indpb=",length(indpb)," indbt=",length(indbt)," ") sub=data.frame(x[(x$batch==levels(x$batch)[b]),c(indtypsamp,indinject,p+nbid)]) if (method=="linear") { res.norm = normlinear(sub,detail,valref[p],b,valNull) } else { if (method=="loess"){ res.norm <- normloess(sub,detail,valref[p],b,span) } else { if (method=="lowess"){ res.norm <- normlowess(sub,detail,valref[p],b,span) } else {stop("\n--\nNo valid 'method' argument supplied.\nMust be 'linear','loess' or 'lowess'.\n--\n")} }} Xn[indbt,p+nbid] = res.norm[[1]] res.ind[p,b] <- res.norm[[2]] # CV batch test : if after normaliszation, CV before < CV after initial values are kept # moypoolRaw=mean(x[indpb,p+nbid]) ; if (moypoolRaw==0) moypoolRaw=1 # moySampleRaw=mean(x[indsp,p+nbid]); if (moySampleRaw==0) moySampleRaw=1 # moypool=mean(Xn[indpb,p+nbid]) ; if (moypool==0) moypool=1 # #moySample=mean(Xn[indsp,p+nbid]); if (moySample==0) moySample=1 # if (sd( Xn[indpb,p+nbid])/moypool>sd(x[indpb,p+nbid])/moypoolRaw) { # Xn[indpb,p+nbid] = (valref[p]*x[indpb,p+nbid])/moypoolRaw # Xn[indsp,p+nbid] = (valref[p]*x[indsp,p+nbid])/moySampleRaw # } } Xn[indpool,p+nbid][Xn[indpool,p+nbid]<0] <- 0 pools2=Xn[indpool,p+nbid]; cv[p,2]=sd(pools2,na.rm=TRUE)/mean(pools2,na.rm=TRUE)# CV apres correction if (detail=="reg" || detail=="plot" ) { # plot before and after correction minval=min(cbind(x[p+nbid],Xn[p+nbid]),na.rm=TRUE);maxval=max(cbind(x[p+nbid],Xn[p+nbid]),na.rm=TRUE) plot( x$injectionOrder, x[,p+nbid],col=x$batch,ylab=labion,ylim=c(minval,maxval), main=paste0("before correction (CV for pools = ",round(cv[p,1],2),")")) points(x$injectionOrder[indpool],x[indpool,p+nbid],col="maroon",pch=".",cex=2) plot(Xn$injectionOrder,Xn[,p+nbid],col=x$batch,ylab="",ylim=c(minval,maxval), main=paste0("after correction (CV for pools = ",round(cv[p,2],2),")")) points(Xn$injectionOrder[indpool],Xn[indpool,p+nbid],col="maroon",pch=".",cex=2) suppressWarnings(plot.design( x[c(indtypsamp,indbatch,indfact,p+nbid)],main="factors effect before correction")) suppressWarnings(plot.design(Xn[c(indtypsamp,indbatch,indfact,p+nbid)],main="factors effect after correction")) } } ### Replacement of post correction negative values by chosen value Xnn=Xn for (i in c((nbid+1):dim(Xn)[2])) { cneg=which(Xn[[i]]<0) Xnn[[i]]=replace(Xn[[i]],cneg,as.numeric(valNull)) } Xn=Xnn if (detail=="reg" || detail=="plot" || detail=="no") { if (nbi > 3) { par(mfrow=c(3,4),ask=F,cex=1.2) # PCA Plot before/after, normed only and ions plot acplight(x[,c(indtypsamp,indbatch,indtypsamp,indfact,(nbid+1):lastIon)],"uv",TRUE) norm.ion <- which(colnames(Xn)%in%(rownames(res.ind)[which(rowSums(res.ind)>=1)])) acplight(Xn[,c(indtypsamp,indbatch,indtypsamp,indfact,(nbid+1):lastIon)],"uv",TRUE,norm.ion) if(length(norm.ion)>0){acplight(Xn[,c(indtypsamp,indbatch,indtypsamp,indfact,norm.ion)],"uv",TRUE)} par(mfrow=c(1,2),ask=F,cex=1.2) # Before/after boxplot cvplot=cv[!is.na(cv[[1]])&!is.na(cv[[2]]),] if(nrow(cvplot)>0){ boxplot(cvplot[[1]],ylim=c(min(cvplot),max(cvplot)),main="CV before correction") boxplot(cvplot[[2]],ylim=c(min(cvplot),max(cvplot)),main="CV after correction") } dev.off() } } if (nbi<=3) {dev.off()} # transposed matrix is return (format of the initial matrix with ions in rows) Xr=Xn[,-c(1:nbid)]; dimnames(Xr)[[1]]=Xn[[1]] Xr=t(Xr) ; Xr <- data.frame(ions=rownames(Xr),Xr) res.norm[[1]] <- Xr ; res.norm[[2]] <- data.frame(metaion,res.ind) ; res.norm[[3]] <- x[,c(1:nbid)] names(res.norm) <- c("dataMatrix","variableMetadata","sampleMetadata") return(res.norm) } acplight <- function(ids, scaling="uv", indiv=FALSE,indcol=NULL) { suppressPackageStartupMessages(library(ade4)) suppressPackageStartupMessages(library(pcaMethods)) # Make a PCA and plot scores and loadings. # First column must contain samples' identifiers. # Columns 2 to 4 contain factors to colour the plots. for (i in 1:3) { idss=ids[which(ids[,i+1]!="NA"),] idss=data.frame(idss[idss[,i+1]!="",]) classe=as.factor(idss[[i+1]]) idsample=as.character(idss[[1]]) colour=1:length(levels(classe)) ions=as.matrix(idss[,5:dim(idss)[2]]) # Removing ions containing NA (not compatible with standard PCA) ions=t(na.omit(t(ions))) if(i==1){if(ncol(ions)!=(ncol(idss)-4)){cat("Note:",(ncol(idss)-4)-ncol(ions),"ions were ignored for PCA display due to NA in intensities.\n")}} # Scaling choice: "uv","none","pareto" object=suppressWarnings(prep(ions, scale=scaling, center=TRUE)) if(i==1){if(length(which(apply(ions,2,var)==0))>0){cat("Warning: there are",length(which(apply(ions,2,var)==0)),"constant ions.\n")}} # ALGO: nipals,svdImpute, Bayesian, svd, probalistic=F result <- pca(object, center=F, method="svd", nPcs=2) # ADE4 : to plot samples' ellipsoid for each class s.class(result@scores, classe, cpoint = 1,xax=1,yax=2,col=colour,sub=sprintf("Scores - PCs %sx%s",1,2), possub="bottomright") #s.label(result@loadings,label = ions, cpoint = 0, clabel=0.4, xax=1,yax=2,sub="Loadings",possub="bottomright") if(i==1){resulti <- result} } if(indiv) { colour <- rep("darkblue",length(resulti@loadings)) ; if(!is.null(indcol)) {colour[-c(indcol)] <- "red"} plot(resulti@loadings,col=colour,main="Loadings",xaxt="n",yaxt="n",pch=20, xlab=bquote(PC1-R^2==.(resulti@R2[1])),ylab=bquote(PC2 - R^2 == .(resulti@R2[2]))) abline(h=0,v=0)} }