Mercurial > repos > melpetera > batchcorrection
view batch_correction_all_loess_script.R @ 1:f64656ae9ea4 draft
planemo upload for repository https://github.com/workflow4metabolomics/batchcorrection.git commit b1f8bd1260c1c4b73600fb3867ca3bc613f258a7
author | melpetera |
---|---|
date | Sun, 09 Oct 2016 09:54:00 -0400 |
parents | 71d83d8920bf |
children |
line wrap: on
line source
loessF <- function(datVn, qcaVi, preVi, spnN) { if(length(qcaVi) < 5) { return(predict(lm(datVn[qcaVi] ~ qcaVi), newdata = data.frame(qcaVi = preVi))) } else { return(predict(loess(datVn[qcaVi] ~ qcaVi, control = loess.control(surface = "direct"), span = spnN), newdata = data.frame(qcaVi = preVi))) } ## Note: ## the surface = 'direct' argument allows extrapolation } ## loessF plotBatchF <- function(datMN, samDF.arg, spnN.arg) { maiC <- switch(gsub("MN", "", deparse(substitute(datMN))), raw = "Raw", nrm = "Normalized") colVc <- c(sample = "green4", pool = "red", blank = "black", other = "yellow") par(font = 2, font.axis = 2, font.lab = 2, lwd = 2, pch = 18) layout(matrix(c(1, 1, 2, 3), nrow = 2), widths = c(0.7, 0.3)) obsNamVc <- rownames(datMN) obsColVc <- sapply(samDF.arg[, "sampleType"], function(typC) ifelse(typC %in% names(colVc), colVc[typC], colVc["other"])) ## Graphic 1: Sum of intensities for each sample par(mar = c(3.6, 3.6, 3.1, 0.6)) batTab <- table(samDF.arg[, "batch"]) sumVn <- rowSums(datMN, na.rm = TRUE) plot(sumVn, cex = 1.2, col = obsColVc, pch = 18, xaxs = "i", xlab = "", ylab = "") mtext("Injection order", line = 2.2, side = 1) mtext("Sum of variable intensities", line = 2.2, side = 2) mtext(maiC, cex = 1.2, line = 1.5, side = 3) abline(v = cumsum(batTab) + 0.5, col = "red") mtext(names(batTab), at = batTab / 2 + c(0, cumsum(batTab[-length(batTab)]))) obsColVuc <- obsColVc[sort(unique(names(obsColVc)))] text(rep(batTab[1], times = length(obsColVuc)), par("usr")[3] + (0.97 - length(obsColVuc) * 0.03 + 1:length(obsColVuc) * 0.03) * diff(par("usr")[3:4]), col = obsColVuc, font = 2, labels = names(obsColVuc), pos = 2) for(batC in names(batTab)) { batSeqVi <- which(samDF.arg[, "batch"] == batC) batPooVi <- intersect(batSeqVi, grep("pool", samDF.arg[, "sampleType"])) batSamVi <- intersect(batSeqVi, grep("sample", samDF.arg[, "sampleType"])) if(length(batPooVi)) lines(batSeqVi, loessF(sumVn, batPooVi, batSeqVi, spnN=spnN.arg), col = colVc["pool"]) lines(batSeqVi, loessF(sumVn, batSamVi, batSeqVi, spnN=spnN.arg), col = colVc["sample"]) } ## Graphics 2 and 3 (right): PCA score plots of components 1-4 radVn <- seq(0, 2 * pi, length.out = 100) epsN <- .Machine[["double.eps"]] ## [1] 2.22e-16 pcaMN <- datMN if(any(is.na(pcaMN))) { minN <- min(pcaMN, na.rm = TRUE) pcaMN[is.na(pcaMN)] <- minN } pcaLs <- opls(pcaMN, predI = 4, algoC = "svd", printL = FALSE, plotL = FALSE) tMN <- getScoreMN(pcaLs) vRelVn <- pcaLs@modelDF[, "R2X"] n <- nrow(tMN) hotN <- 2 * (n - 1) * (n^2 - 1) / (n^2 * (n - 2)) hotFisN <- hotN * qf(0.95, 2, n - 2) pcsLs <- list(c(1, 2), c(3, 4)) par(mar = c(3.6, 3.6, 0.6, 1.1)) for(pcsN in 1:length(pcsLs)) { pcsVn <- pcsLs[[pcsN]] tcsMN <- tMN[, pcsVn] micMN <- solve(cov(tcsMN)) n <- nrow(tMN) hotN <- 2 * (n - 1) * (n^2 - 1) / (n^2 * (n - 2)) hotFisN <- hotN * qf(0.95, 2, n - 2) hotVn <- apply(tcsMN, 1, function(x) 1 - pf(1 / hotN * t(as.matrix(x)) %*% micMN %*% as.matrix(x), 2, n - 2)) obsHotVi <- which(hotVn < 0.05) xLabC <- paste("t", pcsVn[1], "(", round(vRelVn[pcsVn[1]] * 100), "%)", sep = "") yLabC <- paste("t", pcsVn[2], "(", round(vRelVn[pcsVn[2]] * 100), "%)", sep = "") xLimVn <- c(-1, 1) * max(sqrt(var(tcsMN[, 1]) * hotFisN), max(abs(tcsMN[, 1]))) yLimVn <- c(-1, 1) * max(sqrt(var(tcsMN[, 2]) * hotFisN), max(abs(tcsMN[, 2]))) plot(tcsMN, main = "", type = "n", xlab = "", ylab = "", xlim = xLimVn, ylim = yLimVn) mtext(xLabC, line = 2.2, side = 1) mtext(yLabC, line = 2.2, side = 2) par(lwd = 1) abline(v = axTicks(1), col = "grey") abline(h = axTicks(2), col = "grey") abline(v = 0) abline(h = 0) lines(sqrt(var(tcsMN[, 1]) * hotFisN) * cos(radVn), sqrt(var(tcsMN[, 2]) * hotFisN) * sin(radVn)) points(tcsMN, col = obsColVc, pch = 18) if(length(obsHotVi)) text(tcsMN[obsHotVi, 1], tcsMN[obsHotVi, 2], col = obsColVc[obsHotVi], labels = obsNamVc[obsHotVi], pos = 3) } ## for(pcsN in 1:length(pcsLs)) { return(invisible(list(sumVn = sumVn, tcsMN = tcsMN))) } ## plotBatchF shiftBatchCorrectF <- function(rawMN.arg, samDF.arg, refC.arg, spnN.arg) { cat("\nReference observations are: ", refC.arg, "\n") ## computing median off all pools (or samples) for each variable refMeaVn <- apply(rawMN.arg[samDF.arg[, "sampleType"] == refC.arg, ], 2, function(feaRefVn) mean(feaRefVn, na.rm = TRUE)) ## splitting data and sample metadata from each batch batRawLs <- split(as.data.frame(rawMN.arg), f = samDF.arg[, "batch"]) batRawLs <- lapply(batRawLs, function(inpDF) as.matrix(inpDF)) batSamLs <- split(as.data.frame(samDF.arg), f = samDF.arg[, "batch"]) ## checking extrapolation: are there pools at the first and last observations of each batch if(refC.arg == "pool") { pooExtML <- matrix(FALSE, nrow = 2, ncol = length(batRawLs), dimnames = list(c("first", "last"), names(batRawLs))) for(batC in names(batSamLs)) { batSamTypVc <- batSamLs[[batC]][, "sampleType"] pooExtML["first", batC] <- head(batSamTypVc, 1) == "pool" pooExtML["last", batC] <- tail(batSamTypVc, 1) == "pool" } if(!all(c(pooExtML))) { cat("\nWarning: Pools are missing at the first and/or last position of the following batches:\n") pooExtBatVi <- which(!apply(pooExtML, 2, all)) for(i in 1:length(pooExtBatVi)) cat(names(pooExtBatVi)[i], ": ", paste(rownames(pooExtML)[!pooExtML[, pooExtBatVi[i]]], collapse = ", "), "\n", sep = "") cat("Extrapolating loess fits for these batches may result in inaccurate modeling!\n") } } ## normalizing nrmMN <- NULL ## normalized data matrix to be computed cat("\nProcessing batch:") for(batC in names(batRawLs)) { ## processing each batch individually cat("\n", batC) batRawMN <- batRawLs[[batC]] batSamDF <- batSamLs[[batC]] batAllVi <- 1:nrow(batRawMN) batRefVi <- grep(refC.arg, batSamDF[, "sampleType"]) if(length(batRefVi) < 5) cat("\nWarning: less than 5 '", refC.arg, "'; linear regression will be performed instead of loess regression for this batch\n", sep="") ## prediction of the loess fit batLoeMN <- apply(batRawMN, 2, function(rawVn) loessF(rawVn, batRefVi, batAllVi, spnN=spnN.arg)) ## normalization batLoeMN[batLoeMN <= 0] <- NA batNrmMN <- batRawMN / batLoeMN nrmMN <- rbind(nrmMN, batNrmMN) } cat("\n") nrmMN <- sweep(nrmMN, MARGIN = 2, STATS = refMeaVn, FUN = "*") return(nrmMN) } ## shiftBatchCorrectF