Mercurial > repos > melpetera > intensity_checks
comparison Intchecks/Script_intensity_check.R @ 0:c2c2e1be904a draft
Uploaded
| author | melpetera |
|---|---|
| date | Thu, 11 Oct 2018 05:33:19 -0400 |
| parents | |
| children | 4973a2104cfd |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:c2c2e1be904a |
|---|---|
| 1 #################################################################### | |
| 2 # SCRIPT INTENSITY CHECK | |
| 3 # V1: Fold and NA | |
| 4 # | |
| 5 # Input: Data Matrix, VariableMetadata, SampleMetadata | |
| 6 # Output: VariableMetadata, Graphics (barplots and boxplots) | |
| 7 # | |
| 8 # Dependencies: RcheckLibrary.R | |
| 9 # | |
| 10 #################################################################### | |
| 11 | |
| 12 | |
| 13 # Parameters (for dev) | |
| 14 if(FALSE){ | |
| 15 | |
| 16 rm(list = ls()) | |
| 17 setwd("Y:\\Developpement\\Intensity check\\Pour tests") | |
| 18 | |
| 19 DM.name <- "DM_NA.tabular" | |
| 20 SM.name <- "SM_NA.tabular" | |
| 21 VM.name <- "vM_NA.tabular" | |
| 22 type <- "One_class" | |
| 23 class.col <- "2" | |
| 24 class1 <- "Blanks" | |
| 25 VM.output <- "new_VM.txt" | |
| 26 graphs.output <- "Barplots_and_Boxplots.pdf" | |
| 27 } | |
| 28 | |
| 29 intens_check <- function(DM.name, SM.name, VM.name, type, class.col, class1, VM.output, graphs.output){ | |
| 30 # This function allows to check the intensities considering classes with a fold calculation, the number and | |
| 31 # the proportion of NA | |
| 32 # | |
| 33 # Two options: | |
| 34 # - one class (selected by the user) against all the remaining samples ("One_class") | |
| 35 # - tests on each class ("Each_class") | |
| 36 # | |
| 37 # Parameters: | |
| 38 # DM.name, SM.name, VM.name: dataMatrix, sampleMetadata, variableMetadata files access | |
| 39 # type: "One_class" or "Each_class" | |
| 40 # class.col: number of the sampleMetadata's column with classes | |
| 41 # class1: name of the class if type="One_class" | |
| 42 # VM.output: output file's access (VM with the new columns) | |
| 43 # graphs.output: pdf with barplots for the proportion of NA and boxplots with the folds values | |
| 44 | |
| 45 | |
| 46 | |
| 47 | |
| 48 # Input --------------------------------------------------------- | |
| 49 | |
| 50 DM <- read.table(DM.name, header=TRUE, sep="\t", check.names=FALSE) | |
| 51 SM <- read.table(SM.name, header=TRUE, sep="\t", check.names=FALSE) | |
| 52 VM <- read.table(VM.name, header=TRUE, sep="\t", check.names=FALSE) | |
| 53 | |
| 54 | |
| 55 | |
| 56 # Table match check with Rchecklibrary | |
| 57 table.check <- match3(DM, SM, VM) | |
| 58 check.err(table.check) | |
| 59 | |
| 60 | |
| 61 rownames(DM) <- DM[,1] | |
| 62 var_names <- DM[,1] | |
| 63 DM <- DM[,-1] | |
| 64 DM <- data.frame(t(DM)) | |
| 65 | |
| 66 class.col <- colnames(SM)[as.numeric(class.col)] | |
| 67 | |
| 68 # check class.col, class1 and the number of classes--------------- | |
| 69 | |
| 70 if(!(class.col %in% colnames(SM))){ | |
| 71 stop("\n- - - - - - - - -\n", "The column ",class.col, " is not a part of the specify sample Metadata","\n- - - - - - - - -\n") | |
| 72 } | |
| 73 | |
| 74 c_class <- SM[,class.col] | |
| 75 c_class <- as.factor(c_class) | |
| 76 nb_class <- nlevels(c_class) | |
| 77 classnames <- levels(c_class) | |
| 78 | |
| 79 | |
| 80 if((nb_class > (nrow(SM))/3)){ | |
| 81 class.err <- c("\n There are too many classes, think about reducing the number of classes and excluding those | |
| 82 with few samples \n") | |
| 83 cat(class.err) | |
| 84 } | |
| 85 | |
| 86 if(type == "One_class"){ | |
| 87 if(!(class1 %in% classnames)){ | |
| 88 list.class1 <- c("\n Classes:",classnames,"\n") | |
| 89 cat(list.class1) | |
| 90 err.class1 <- c("The class ",class1, " does not appear in the column ", class.col) | |
| 91 stop("\n- - - - - - - - -\n", err.class1,"\n- - - - - - - - -\n") | |
| 92 } | |
| 93 } | |
| 94 | |
| 95 #If type is "one_class", change others classes in "other" | |
| 96 if(type == "One_class"){ | |
| 97 for(i in 1:length(c_class)){ | |
| 98 if(c_class[i]!=class1){ | |
| 99 c_class <- as.character(c_class) | |
| 100 c_class[i] <- "Other" | |
| 101 c_class <- as.factor(c_class) | |
| 102 nb_class <- nlevels(c_class) | |
| 103 classnames <- levels(c_class) | |
| 104 | |
| 105 } | |
| 106 } | |
| 107 } | |
| 108 | |
| 109 DM <- cbind(DM,c_class) | |
| 110 | |
| 111 # fold ------------------------------------------------------- | |
| 112 n <- 1 | |
| 113 fold <- data.frame() | |
| 114 for(j in 1:(nb_class-1)){ | |
| 115 for(k in (j+1):nb_class) { | |
| 116 for (i in 1:(length(DM)-1)){ | |
| 117 fold[i,n] <- mean(DM[which(DM$c_class==classnames[k]),i], na.rm=TRUE)/ | |
| 118 mean(DM[which(DM$c_class==classnames[j]),i], na.rm=TRUE)} | |
| 119 names(fold)[n] <- paste("fold",classnames[k],"VS", classnames[j], sep="_") | |
| 120 n <- n + 1} | |
| 121 } | |
| 122 | |
| 123 # NA --------------------------------------------------------- | |
| 124 calcul_NA <- data.frame() | |
| 125 pct_NA <- data.frame() | |
| 126 for (i in 1:(length(DM)-1)){ | |
| 127 for (j in 1:nb_class){ | |
| 128 n <- 0 | |
| 129 new_DM <- DM[which(DM$c_class==classnames[j]),i] | |
| 130 for(k in 1:length(new_DM)){ | |
| 131 if (is.na(new_DM[k])){ | |
| 132 n <- n + 1} | |
| 133 calcul_NA[i,j] <- n | |
| 134 pct_NA[i,j] <- (calcul_NA[i,j]/length(new_DM))*100} | |
| 135 } | |
| 136 } | |
| 137 names(calcul_NA) <- paste("Nb_NA",classnames, sep="_") | |
| 138 names(pct_NA) <- paste("Pct_NA", classnames, sep="_") | |
| 139 | |
| 140 # Alert message if there is no NA | |
| 141 | |
| 142 sumNA <- colSums(calcul_NA) | |
| 143 sum_total <- sum(sumNA) | |
| 144 | |
| 145 alerte <- NULL | |
| 146 if(sum_total==0){ | |
| 147 alerte <- c(alerte, "Data Matrix contains no NA.\n") | |
| 148 } | |
| 149 | |
| 150 if(length(alerte) != 0){ | |
| 151 cat(alerte,"\n") | |
| 152 } | |
| 153 | |
| 154 table_NA <- cbind(calcul_NA, pct_NA) | |
| 155 | |
| 156 # check columns names ---------------------------------------- | |
| 157 | |
| 158 # Fold | |
| 159 VM.names <- colnames(VM) | |
| 160 fold.names <- colnames(fold) | |
| 161 | |
| 162 for (i in 1:length(VM.names)){ | |
| 163 for (j in 1:length(fold.names)){ | |
| 164 if (VM.names[i]==fold.names[j]){ | |
| 165 fold.names[j] <- paste(fold.names[j],"2", sep="_") | |
| 166 } | |
| 167 } | |
| 168 } | |
| 169 colnames(fold) <- fold.names | |
| 170 | |
| 171 # NA | |
| 172 NA.names <- colnames(table_NA) | |
| 173 | |
| 174 for (i in 1:length(VM.names)){ | |
| 175 for (j in 1:length(NA.names)){ | |
| 176 if (VM.names[i]==NA.names[j]){ | |
| 177 NA.names[j] <- paste(NA.names[j],"2", sep="_") | |
| 178 } | |
| 179 } | |
| 180 } | |
| 181 colnames(table_NA) <- NA.names | |
| 182 | |
| 183 #for NA barplots --------------------------------------------- | |
| 184 | |
| 185 data_bp <- data.frame() | |
| 186 | |
| 187 for (j in 1:ncol(pct_NA)){ | |
| 188 Nb_NA_0_20 <- 0 | |
| 189 Nb_NA_20_40 <- 0 | |
| 190 Nb_NA_40_60 <- 0 | |
| 191 Nb_NA_60_80 <- 0 | |
| 192 Nb_NA_80_100 <- 0 | |
| 193 for (i in 1:nrow(pct_NA)){ | |
| 194 | |
| 195 if ((0<=pct_NA[i,j])&(pct_NA[i,j]<20)){ | |
| 196 Nb_NA_0_20=Nb_NA_0_20+1 | |
| 197 } | |
| 198 | |
| 199 if ((20<=pct_NA[i,j])&(pct_NA[i,j]<40)){ | |
| 200 Nb_NA_20_40=Nb_NA_20_40+1} | |
| 201 | |
| 202 if ((40<=pct_NA[i,j])&(pct_NA[i,j]<60)){ | |
| 203 Nb_NA_40_60=Nb_NA_40_60+1} | |
| 204 | |
| 205 if ((60<=pct_NA[i,j])&(pct_NA[i,j]<80)){ | |
| 206 Nb_NA_60_80=Nb_NA_60_80+1} | |
| 207 | |
| 208 if ((80<=pct_NA[i,j])&(pct_NA[i,j]<=100)){ | |
| 209 Nb_NA_80_100=Nb_NA_80_100+1} | |
| 210 } | |
| 211 data_bp[1,j] <- Nb_NA_0_20 | |
| 212 data_bp[2,j] <- Nb_NA_20_40 | |
| 213 data_bp[3,j] <- Nb_NA_40_60 | |
| 214 data_bp[4,j] <- Nb_NA_60_80 | |
| 215 data_bp[5,j] <- Nb_NA_80_100 | |
| 216 } | |
| 217 rownames(data_bp) <- c("0-20%", "20-40%", "40-60%", "60-80%", "80-100%") | |
| 218 colnames(data_bp) <- classnames | |
| 219 data_bp <- as.matrix(data_bp) | |
| 220 | |
| 221 | |
| 222 # Output-------------------------------------------------------- | |
| 223 | |
| 224 VM <- cbind(VM,fold,table_NA) | |
| 225 | |
| 226 write.table(VM, VM.output,sep="\t", quote=FALSE, row.names=FALSE) | |
| 227 | |
| 228 #graphics pdf | |
| 229 | |
| 230 pdf(graphs.output) | |
| 231 | |
| 232 #Boxplots for NA | |
| 233 | |
| 234 par(mar=c(5.1, 4.1, 4.1, 8.1), xpd=TRUE) | |
| 235 | |
| 236 bp=barplot(data_bp, col=rainbow(nrow(data_bp)), main="Proportion of NA", xlab="Classes", ylab="Variables") | |
| 237 legend("topright", fill=rainbow(nrow(data_bp)),rownames(data_bp), inset=c(-0.3,0)) | |
| 238 | |
| 239 | |
| 240 stock=0 | |
| 241 for (i in 1:nrow(data_bp)){ | |
| 242 text(bp, stock+data_bp[i,]/2, data_bp[i,], col="white") | |
| 243 stock <- stock+data_bp[i,] | |
| 244 } | |
| 245 | |
| 246 | |
| 247 #Boxplots for fold test | |
| 248 for (j in 1:ncol(fold)){ | |
| 249 title=paste(fold.names[j]) | |
| 250 boxplot(fold[j], main=title) | |
| 251 } | |
| 252 | |
| 253 dev.off() | |
| 254 | |
| 255 } | |
| 256 | |
| 257 | |
| 258 # Function call--------------- | |
| 259 | |
| 260 #setwd("Y:\\Developpement\\Intensity check\\Pour tests") | |
| 261 #intens_check("DM_NA.tabular", "SM_NA.tabular", "VM_NA.tabular", "One_class", "class", "Blanks", "VM_oneclass_NA.txt", | |
| 262 #"Barplots_and_Boxplots") | |
| 263 | |
| 264 |
