comparison fsd.py @ 16:6bd9ef49d013 draft

planemo upload for repository https://github.com/monikaheinzl/duplexanalysis_galaxy/tree/master/tools/fsd commit dfaab79252a858e8df16bbea3607ebf1b6962e5a
author mheinzl
date Mon, 08 Oct 2018 05:50:18 -0400
parents
children 2e517a54eedc
comparison
equal deleted inserted replaced
15:32921a67437b 16:6bd9ef49d013
1 #!/usr/bin/env python
2
3 # Family size distribution of SSCSs
4 #
5 # Author: Monika Heinzl, Johannes-Kepler University Linz (Austria)
6 # Contact: monika.heinzl@edumail.at
7 #
8 # Takes at least one TABULAR file with tags before the alignment to the SSCS, but up to 4 files can be provided, as input.
9 # The program produces a plot which shows the distribution of family sizes of the all SSCSs from the input files and
10 # a tabular file with the data of the plot, as well as a TXT file with all tags of the DCS and their family sizes.
11 # If only one file is provided, then a family size distribution, which is separated after SSCSs without a partner and DCSs, is produced.
12 # Whereas a family size distribution with multiple data in one plot is produced, when more than one file (up to 4) is given.
13
14 # USAGE: python FSD_Galaxy_1.4_commandLine_FINAL.py --inputFile1 filename --inputName1 filename --inputFile2 filename2 --inputName2 filename2 --inputFile3 filename3 --inputName3 filename3 --inputFile4 filename4 --inputName4 filename4 --output_tabular outptufile_name_tabular --output_pdf outptufile_name_pdf
15
16 import argparse
17 import sys
18
19 import matplotlib.pyplot as plt
20 import numpy
21 from matplotlib.backends.backend_pdf import PdfPages
22
23 plt.switch_backend('agg')
24
25
26 def readFileReferenceFree(file):
27 with open(file, 'r') as dest_f:
28 data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter='\t', comments='#', dtype='string')
29 return(data_array)
30
31
32 def make_argparser():
33 parser = argparse.ArgumentParser(description='Family Size Distribution of duplex sequencing data')
34 parser.add_argument('--inputFile1', help='Tabular File with three columns: ab or ba, tag and family size.')
35 parser.add_argument('--inputName1')
36 parser.add_argument('--inputFile2', default=None, help='Tabular File with three columns: ab or ba, tag and family size.')
37 parser.add_argument('--inputName2')
38 parser.add_argument('--inputFile3', default=None, help='Tabular File with three columns: ab or ba, tag and family size.')
39 parser.add_argument('--inputName3')
40 parser.add_argument('--inputFile4', default=None, help='Tabular File with three columns: ab or ba, tag and family size.')
41 parser.add_argument('--inputName4')
42 parser.add_argument('--output_pdf', default="data.pdf", type=str, help='Name of the pdf file.')
43 parser.add_argument('--output_tabular', default="data.tabular", type=str, help='Name of the tabular file.')
44 return parser
45
46
47 def compare_read_families(argv):
48 parser = make_argparser()
49 args = parser.parse_args(argv[1:])
50
51 firstFile = args.inputFile1
52 name1 = args.inputName1
53
54 secondFile = args.inputFile2
55 name2 = args.inputName2
56 thirdFile = args.inputFile3
57 name3 = args.inputName3
58 fourthFile = args.inputFile4
59 name4 = args.inputName4
60
61 title_file = args.output_tabular
62 title_file2 = args.output_pdf
63
64 sep = "\t"
65
66 plt.rc('figure', figsize=(11.69, 8.27)) # A4 format
67 plt.rcParams['patch.edgecolor'] = "black"
68 plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color
69 plt.rcParams['xtick.labelsize'] = 14
70 plt.rcParams['ytick.labelsize'] = 14
71
72 list_to_plot = []
73 label = []
74 data_array_list = []
75 with open(title_file, "w") as output_file, PdfPages(title_file2) as pdf:
76 fig = plt.figure()
77 plt.subplots_adjust(bottom=0.25)
78 if firstFile != str(None):
79 file1 = readFileReferenceFree(firstFile)
80 integers = numpy.array(file1[:, 0]).astype(int) # keep original family sizes
81
82 # for plot: replace all big family sizes by 22
83 data1 = numpy.array(file1[:, 0]).astype(int)
84 bigFamilies = numpy.where(data1 > 20)[0]
85 data1[bigFamilies] = 22
86
87 name1 = name1.split(".tabular")[0]
88 list_to_plot.append(data1)
89 label.append(name1)
90 data_array_list.append(file1)
91
92 legend = "\n\n\n{}".format(name1)
93 plt.text(0.1, 0.11, legend, size=12, transform=plt.gcf().transFigure)
94 legend1 = "singletons:\nabsolute nr.\n{:,}".format(numpy.bincount(data1)[1])
95 plt.text(0.4, 0.11, legend1, size=12, transform=plt.gcf().transFigure)
96
97 legend3 = "rel. freq\n{:.3f}".format(float(numpy.bincount(data1)[1]) / len(data1))
98 plt.text(0.5, 0.11, legend3, size=12, transform=plt.gcf().transFigure)
99
100 legend4 = "family size > 20:\nabsolute nr.\n{:,}".format(numpy.bincount(data1)[len(numpy.bincount(data1)) - 1].astype(int))
101 plt.text(0.6, 0.11, legend4, size=12, transform=plt.gcf().transFigure)
102
103 legend5 = "rel. freq\n{:.3f}".format(float(numpy.bincount(data1)[len(numpy.bincount(data1)) - 1]) / len(data1))
104 plt.text(0.7, 0.11, legend5, size=12, transform=plt.gcf().transFigure)
105
106 legend6 = "total length\n{:,}".format(len(data1))
107 plt.text(0.8, 0.11, legend6, size=12, transform=plt.gcf().transFigure)
108
109 if secondFile != str(None):
110 file2 = readFileReferenceFree(secondFile)
111 data2 = numpy.asarray(file2[:, 0]).astype(int)
112 bigFamilies2 = numpy.where(data2 > 20)[0]
113 data2[bigFamilies2] = 22
114
115 list_to_plot.append(data2)
116 name2 = name2.split(".tabular")[0]
117 label.append(name2)
118 data_array_list.append(file2)
119
120 plt.text(0.1, 0.09, name2, size=12, transform=plt.gcf().transFigure)
121
122 legend1 = "{:,}".format(numpy.bincount(data2)[1])
123 plt.text(0.4, 0.09, legend1, size=12, transform=plt.gcf().transFigure)
124
125 legend3 = "{:.3f}".format(float(numpy.bincount(data2)[1]) / len(data2))
126 plt.text(0.5, 0.09, legend3, size=12, transform=plt.gcf().transFigure)
127
128 legend4 = "{:,}".format(numpy.bincount(data2)[len(numpy.bincount(data2)) - 1].astype(int))
129 plt.text(0.6, 0.09, legend4, size=12, transform=plt.gcf().transFigure)
130
131 legend5 = "{:.3f}".format(float(numpy.bincount(data2)[len(numpy.bincount(data2)) - 1]) / len(data2))
132 plt.text(0.7, 0.09, legend5, size=12, transform=plt.gcf().transFigure)
133
134 legend6 = "{:,}".format(len(data2))
135 plt.text(0.8, 0.09, legend6, size=12, transform=plt.gcf().transFigure)
136
137 if thirdFile != str(None):
138 file3 = readFileReferenceFree(thirdFile)
139
140 data3 = numpy.asarray(file3[:, 0]).astype(int)
141 bigFamilies3 = numpy.where(data3 > 20)[0]
142 data3[bigFamilies3] = 22
143
144 list_to_plot.append(data3)
145 name3 = name3.split(".tabular")[0]
146 label.append(name3)
147 data_array_list.append(file3)
148
149 plt.text(0.1, 0.07, name3, size=12, transform=plt.gcf().transFigure)
150
151 legend1 = "{:,}".format(numpy.bincount(data3)[1])
152 plt.text(0.4, 0.07, legend1, size=12, transform=plt.gcf().transFigure)
153
154 legend3 = "{:.3f}".format(float(numpy.bincount(data3)[1]) / len(data3))
155 plt.text(0.5, 0.07, legend3, size=12, transform=plt.gcf().transFigure)
156
157 legend4 = "{:,}".format(numpy.bincount(data3)[len(numpy.bincount(data3)) - 1].astype(int))
158 plt.text(0.6, 0.07, legend4, size=12, transform=plt.gcf().transFigure)
159
160 legend5 = "{:.3f}".format(float(numpy.bincount(data3)[len(numpy.bincount(data3)) - 1]) / len(data3))
161 plt.text(0.7, 0.07, legend5, size=12, transform=plt.gcf().transFigure)
162
163 legend6 = "{:,}".format(len(data3))
164 plt.text(0.8, 0.07, legend6, size=12, transform=plt.gcf().transFigure)
165
166 if fourthFile != str(None):
167 file4 = readFileReferenceFree(fourthFile)
168
169 data4 = numpy.asarray(file4[:, 0]).astype(int)
170
171 bigFamilies4 = numpy.where(data4 > 20)[0]
172 data4[bigFamilies4] = 22
173
174 list_to_plot.append(data4)
175 name4 = name4.split(".tabular")[0]
176 label.append(name4)
177 data_array_list.append(file4)
178
179 plt.text(0.1, 0.05, name4, size=12, transform=plt.gcf().transFigure)
180
181 legend1 = "{:,}".format(numpy.bincount(data4)[1])
182 plt.text(0.4, 0.05, legend1, size=12, transform=plt.gcf().transFigure)
183
184 legend4 = "{:.3f}".format(float(numpy.bincount(data4)[1]) / len(data4))
185 plt.text(0.5, 0.05, legend4, size=12, transform=plt.gcf().transFigure)
186
187 legend4 = "{:,}".format(numpy.bincount(data4)[len(numpy.bincount(data4)) - 1].astype(int))
188 plt.text(0.6, 0.05, legend4, size=12, transform=plt.gcf().transFigure)
189
190 legend5 = "{:.3f}".format(float(numpy.bincount(data4)[len(numpy.bincount(data4)) - 1]) / len(data4))
191 plt.text(0.7, 0.05, legend5, size=12, transform=plt.gcf().transFigure)
192
193 legend6 = "{:,}".format(len(data4))
194 plt.text(0.8, 0.05, legend6, size=12, transform=plt.gcf().transFigure)
195
196 maximumX = numpy.amax(numpy.concatenate(list_to_plot))
197 minimumX = numpy.amin(numpy.concatenate(list_to_plot))
198
199 counts = plt.hist(list_to_plot, bins=range(minimumX, maximumX + 1), stacked=False, edgecolor="black",
200 linewidth=1, label=label, align="left", alpha=0.7, rwidth=0.8)
201
202 ticks = numpy.arange(minimumX - 1, maximumX, 1)
203 ticks1 = map(str, ticks)
204 ticks1[len(ticks1) - 1] = ">20"
205 plt.xticks(numpy.array(ticks), ticks1)
206
207 plt.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1))
208 # plt.title("Family Size Distribution", fontsize=14)
209 plt.xlabel("Family size", fontsize=14)
210 plt.ylabel("Absolute Frequency", fontsize=14)
211 plt.margins(0.01, None)
212 plt.grid(b=True, which="major", color="#424242", linestyle=":")
213 pdf.savefig(fig)
214 plt.close()
215
216 # write data to CSV file
217 output_file.write("Values from family size distribution with all datasets\n")
218 output_file.write("\nFamily size")
219 for i in label:
220 output_file.write("{}{}".format(sep, i))
221 # output_file.write("{}sum".format(sep))
222 output_file.write("\n")
223 j = 0
224 for fs in counts[1][0:len(counts[1]) - 1]:
225 if fs == 21:
226 fs = ">20"
227 else:
228 fs = "={}".format(fs)
229 output_file.write("FS{}{}".format(fs, sep))
230 if len(label) == 1:
231 output_file.write("{}{}".format(int(counts[0][j]), sep))
232 else:
233 for n in range(len(label)):
234 output_file.write("{}{}".format(int(counts[0][n][j]), sep))
235 output_file.write("\n")
236 j += 1
237 output_file.write("sum{}".format(sep))
238 if len(label) == 1:
239 output_file.write("{}{}".format(int(sum(counts[0])), sep))
240 else:
241 for i in counts[0]:
242 output_file.write("{}{}".format(int(sum(i)), sep))
243
244 # Family size distribution after DCS and SSCS
245 for dataset, data, name_file in zip(list_to_plot, data_array_list, label):
246 maximumX = numpy.amax(dataset)
247 minimumX = numpy.amin(dataset)
248
249 tags = numpy.array(data[:, 2])
250 seq = numpy.array(data[:, 1])
251 data = numpy.array(dataset)
252
253 # find all unique tags and get the indices for ALL tags, but only once
254 u, index_unique, c = numpy.unique(numpy.array(seq), return_counts=True, return_index=True)
255 d = u[c > 1]
256
257 # get family sizes, tag for duplicates
258 duplTags_double = data[numpy.in1d(seq, d)]
259 duplTags = duplTags_double[0::2] # ab of DCS
260 duplTagsBA = duplTags_double[1::2] # ba of DCS
261
262 # duplTags_double_tag = tags[numpy.in1d(seq, d)]
263 # duplTags_double_seq = seq[numpy.in1d(seq, d)]
264
265 # get family sizes for SSCS with no partner
266 ab = numpy.where(tags == "ab")[0]
267 abSeq = seq[ab]
268 ab = data[ab]
269 ba = numpy.where(tags == "ba")[0]
270 baSeq = seq[ba]
271 ba = data[ba]
272
273 dataAB = ab[numpy.in1d(abSeq, d, invert=True)]
274 dataBA = ba[numpy.in1d(baSeq, d, invert=True)]
275
276 list1 = [duplTags_double, dataAB, dataBA] # list for plotting
277
278 # information for family size >= 3
279 dataAB_FS3 = dataAB[dataAB >= 3]
280 dataBA_FS3 = dataBA[dataBA >= 3]
281 ab_FS3 = ab[ab >= 3]
282 ba_FS3 = ba[ba >= 3]
283
284 duplTags_FS3 = duplTags[(duplTags >= 3) & (duplTagsBA >= 3)] # ab+ba with FS>=3
285 duplTags_FS3_BA = duplTagsBA[(duplTags >= 3) & (duplTagsBA >= 3)] # ba+ab with FS>=3
286 duplTags_double_FS3 = len(duplTags_FS3) + len(duplTags_FS3_BA) # both ab and ba strands with FS>=3
287
288 fig = plt.figure()
289
290 plt.subplots_adjust(bottom=0.3)
291 counts = plt.hist(list1, bins=range(minimumX, maximumX + 1), stacked=True, label=["duplex", "ab", "ba"], edgecolor="black", linewidth=1, align="left", color=["#FF0000", "#5FB404", "#FFBF00"])
292 # tick labels of x axis
293 ticks = numpy.arange(minimumX - 1, maximumX, 1)
294 ticks1 = map(str, ticks)
295 ticks1[len(ticks1) - 1] = ">20"
296 plt.xticks(numpy.array(ticks), ticks1)
297 singl = counts[0][2][0] # singletons
298 last = counts[0][2][len(counts[0][0]) - 1] # large families
299
300 plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True)
301 # plt.title(name1, fontsize=14)
302 plt.xlabel("Family size", fontsize=14)
303 plt.ylabel("Absolute Frequency", fontsize=14)
304 plt.margins(0.01, None)
305 plt.grid(b=True, which="major", color="#424242", linestyle=":")
306
307 # extra information beneath the plot
308 legend = "SSCS ab= \nSSCS ba= \nDCS (total)= \nlength of dataset="
309 plt.text(0.1, 0.09, legend, size=12, transform=plt.gcf().transFigure)
310
311 legend = "absolute numbers\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,}".format(len(dataAB), len(dataBA), len(duplTags), len(duplTags_double), (len(dataAB) + len(dataBA) + len(duplTags)))
312 plt.text(0.35, 0.09, legend, size=12, transform=plt.gcf().transFigure)
313
314 legend = "relative frequencies\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format(float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), (len(dataAB) + len(dataBA) + len(duplTags)))
315 plt.text(0.54, 0.09, legend, size=12, transform=plt.gcf().transFigure)
316
317 legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format(float(len(dataAB)) / (len(ab) + len(ba)), float(len(dataBA)) / (len(ab) + len(ba)), float(len(duplTags)) / (len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)), (len(ab) + len(ba)))
318 plt.text(0.64, 0.09, legend, size=12, transform=plt.gcf().transFigure)
319
320 legend1 = "\nsingletons:\nfamily size > 20:"
321 plt.text(0.1, 0.03, legend1, size=12, transform=plt.gcf().transFigure)
322
323 legend4 = "{:,}\n{:,}".format(singl.astype(int), last.astype(int))
324 plt.text(0.35, 0.03, legend4, size=12, transform=plt.gcf().transFigure)
325
326 legend3 = "{:.3f}\n{:.3f}".format(singl / len(data), last / len(data))
327 plt.text(0.54, 0.03, legend3, size=12, transform=plt.gcf().transFigure)
328
329 pdf.savefig(fig)
330 plt.close()
331
332 # write same information to a csv file
333 count = numpy.bincount(integers) # original counts of family sizes
334 output_file.write("\nDataset:{}{}\n".format(sep, name_file))
335 output_file.write("max. family size:{}{}\n".format(sep, max(integers)))
336 output_file.write("absolute frequency:{}{}\n".format(sep, count[len(count) - 1]))
337 output_file.write("relative frequency:{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count)))
338
339 output_file.write("{}singletons:{}{}family size > 20:\n".format(sep, sep, sep))
340 output_file.write("{}absolute nr.{}rel. freq{}absolute nr.{}rel. freq{}total length\n".format(sep, sep, sep, sep, sep))
341 output_file.write("{}{}{}{}{:.3f}{}{}{}{:.3f}{}{}\n\n".format(name_file, sep, singl.astype(int), sep, singl / len(data), sep, last.astype(int), sep, last / len(data), sep, len(data)))
342
343 # information for FS >= 1
344 output_file.write("The unique frequencies were calculated from the dataset where the tags occured only once (=ab without DCS, ba without DCS)\nWhereas the total frequencies were calculated from the whole dataset (=including the DCS).\n\n")
345 output_file.write("FS >= 1{}{}unique:{}total:\n".format(sep, sep, sep))
346 output_file.write("nr./rel. freq of ab={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataAB), sep, float(len(dataAB)) / (len(dataAB) + len(dataBA) + len( duplTags)), sep, float(len(dataAB)) / (len(ab) + len(ba))))
347 output_file.write("nr./rel. freq of ba={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataBA), sep, float(len(dataBA)) / (len(dataBA) + len(dataBA) + len(duplTags)), sep, float(len(dataBA)) / (len(ba) + len(ba))))
348 output_file.write("nr./rel. freq of DCS (total)={}{} ({}){}{:.3f}{}{:.3f} ({:.3f})\n".format(sep, len(duplTags), len(duplTags_double), sep, float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), sep, float(len(duplTags)) / ( len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba))))
349 output_file.write("length of dataset={}{}{}{}{}{}\n".format(sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep, (len(ab) + len(ba))))
350 # information for FS >= 3
351 output_file.write("FS >= 3{}{}unique:{}total:\n".format(sep, sep, sep))
352 output_file.write("nr./rel. freq of ab={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataAB_FS3), sep, float(len(dataAB_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(dataAB_FS3)) / (len(ab_FS3) + len(ba_FS3))))
353 output_file.write("nr./rel. freq of ba={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataBA_FS3), sep, float(len(dataBA_FS3)) / (len(dataBA_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(dataBA_FS3)) / (len(ba_FS3) + len(ba_FS3))))
354 output_file.write("nr./rel. freq of DCS (total)={}{} ({}){}{:.3f}{}{:.3f} ({:.3f})\n".format(sep, len(duplTags_FS3), duplTags_double_FS3, sep, float(len( duplTags_FS3)) / (len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(duplTags_FS3)) / (len(ab_FS3) + len(ba_FS3)), float(duplTags_double_FS3) / (len(ab_FS3) + len(ba_FS3))))
355 output_file.write("length of dataset={}{}{}{}{}{}\n".format(sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, (len(ab_FS3) + len(ba_FS3))))
356
357 output_file.write("\nValues from family size distribution\n")
358 output_file.write("{}duplex{}ab{}ba{}sum\n".format(sep, sep, sep, sep))
359 for dx, ab, ba, fs in zip(counts[0][0], counts[0][1], counts[0][2], counts[1]):
360 if fs == 21:
361 fs = ">20"
362 else:
363 fs = "={}".format(fs)
364 ab1 = ab - dx
365 ba1 = ba - ab
366 output_file.write("FS{}{}{}{}{}{}{}{}{}\n".format(fs, sep, int(dx), sep, int(ab1), sep, int(ba1), sep, int(ba)))
367
368 print("Files successfully created!")
369
370
371 if __name__ == '__main__':
372 sys.exit(compare_read_families(sys.argv))