Mercurial > repos > mheinzl > fsd_bvsa
view fsd_beforevsafter.py @ 7:c357ce2783a4 draft
planemo upload for repository https://github.com/monikaheinzl/galaxyProject/tree/master/tools/fsd_beforevsafter commit 4c46f2914e9da5c310feb886b64fca8eb09ea767
author | mheinzl |
---|---|
date | Wed, 23 May 2018 15:04:39 -0400 |
parents | 1eae0524b285 |
children | 238a71241876 |
line wrap: on
line source
#!/usr/bin/env python # Family size distribution of DCS from various steps of the Galaxy pipeline # # Author: Monika Heinzl, Johannes-Kepler University Linz (Austria) # Contact: monika.heinzl@edumail.at # # Takes a TXT file with tags of reads that were aligned to certain regions of the reference genome (optional), # a TABULAR file with tags before the alignment to the SSCS, a FASTA file with reads that were part of the DCS and # a FASTA file with tags after trimming as input (optional). # The program produces a plot which shows the distribution of family sizes of the DCS from the input files and # a CSV file with the data of the plot. # USAGE: python FSD before vs after_no_refF1.3_FINAL.py --inputFile_SSCS filenameSSCS --inputName1 filenameSSCS --makeDCS filenameMakeDCS --afterTrimming filenameAfterTrimming -- alignedTags filenameTagsRefGenome # --sep "characterWhichSeparatesCSVFile" --output_csv outptufile_name_csv --output_pdf outptufile_name_pdf import numpy import matplotlib.pyplot as plt from collections import Counter from Bio import SeqIO import argparse import sys import os from matplotlib.backends.backend_pdf import PdfPages def readFileReferenceFree(file, delim): with open(file, 'r') as dest_f: data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter=delim, comments='#', dtype='string') return(data_array) def readFasta(file): tag_consensus = [] fs_consensus = [] with open(file, "r") as consFile: for record in SeqIO.parse(consFile, "fasta"): tag_consensus.append(record.id) line = record.description a, b = line.split(" ") fs1, fs2 = b.split("-") fs_consensus.extend([fs1,fs2]) fs_consensus = numpy.array(fs_consensus).astype(int) return(tag_consensus, fs_consensus) def make_argparser(): parser = argparse.ArgumentParser(description='Analysis of read loss in duplex sequencing data') parser.add_argument('--inputFile_SSCS', help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName1') parser.add_argument('--makeDCS', help='FASTA File with information about tag and family size in the header.') parser.add_argument('--afterTrimming',default=None, help='FASTA File with information about tag and family size in the header.') parser.add_argument('--alignedTags',default=None, help=' TXT file with tags aligned to the reference genome and family size.') parser.add_argument('--output_pdf', default="data.pdf", type=str, help='Name of the pdf and csv file.') parser.add_argument('--output_csv', default="data.csv", type=str, help='Name of the pdf and csv file.') parser.add_argument('--sep', default=",", help='Separator in the csv file.') return parser def compare_read_families_read_loss(argv): parser = make_argparser() args = parser.parse_args(argv[1:]) SSCS_file = args.inputFile_SSCS SSCS_file_name = args.inputName1 makeConsensus = args.makeDCS afterTrimming = args.afterTrimming ref_genome = args.alignedTags title_file = args.output_csv title_file2 = args.output_pdf sep = args.sep if type(sep) is not str or len(sep)>1: print("Error: --sep must be a single character.") exit(4) with open(title_file, "w") as output_file, PdfPages(title_file2) as pdf: ### PLOT ### plt.rc('figure', figsize=(11.69, 8.27)) # A4 format plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['ytick.labelsize'] = 14 plt.rcParams['patch.edgecolor'] = "black" fig = plt.figure() plt.subplots_adjust(bottom=0.3) list1 = [] colors = [] labels = [] ### data with tags of SSCS data_array = readFileReferenceFree(SSCS_file, "\t") seq = numpy.array(data_array[:, 1]) tags = numpy.array(data_array[:, 2]) quant = numpy.array(data_array[:, 0]).astype(int) # split data with all tags of SSCS after ab and ba strands all_ab = seq[numpy.where(tags == "ab")[0]] all_ba = seq[numpy.where(tags == "ba")[0]] quant_ab_sscs = quant[numpy.where(tags == "ab")[0]] quant_ba_sscs = quant[numpy.where(tags == "ba")[0]] seqDic_ab = dict(zip(all_ab, quant_ab_sscs)) seqDic_ba = dict(zip(all_ba, quant_ba_sscs)) ### get tags of the SSCS which form a DCS # group large family sizes bigFamilies = numpy.where(quant > 20)[0] quant[bigFamilies] = 22 maximumX = numpy.amax(quant) # find all unique tags and get the indices for ALL tags (ab AND ba) u, index_unique, c = numpy.unique(numpy.array(seq), return_counts=True, return_index=True) d = u[c > 1] # get family sizes, tag for the duplicates duplTags_double = quant[numpy.in1d(seq, d)] list1.append(duplTags_double) colors.append("#0000FF") labels.append("before SSCS building") duplTags = duplTags_double[0::2] # ab of DCS duplTagsBA = duplTags_double[1::2] # ba of DCS d2 = d[(duplTags >= 3) & (duplTagsBA >= 3)] # ab and ba FS>=3 # all SSCSs FS>=3 seq_unique, seqUnique_index = numpy.unique(seq, return_index=True) seq_unique_FS = quant[seqUnique_index] seq_unique_FS3 = seq_unique_FS[seq_unique_FS >= 3] legend1 = "\ntotal nr. of tags (unique, FS>=1):\nDCS (before SSCS building, FS>=1):\ntotal nr. of tags (unique, FS>=3):\nDCS (before SSCS building, FS>=3):" legend2 = "total numbers * \n{:,}\n{:,}\n{:,}\n{:,}".format(len(seq_unique_FS), len(duplTags), len(seq_unique_FS3), len(d2)) plt.text(0.55, 0.14, legend1, size=11, transform=plt.gcf().transFigure) plt.text(0.88, 0.14, legend2, size=11, transform=plt.gcf().transFigure) ## data make DCS tag_consensus, fs_consensus = readFasta(makeConsensus) ### group large family sizes in the plot of fasta files bigFamilies = numpy.where(fs_consensus > 20)[0] fs_consensus[bigFamilies] = 22 list1.append(fs_consensus) colors.append("#298A08") labels.append("after DCS building") legend3 = "after DCS building:" legend4 = "{:,}".format(len(tag_consensus)) plt.text(0.55, 0.11, legend3, size=11, transform=plt.gcf().transFigure) plt.text(0.88, 0.11, legend4, size=11, transform=plt.gcf().transFigure) ### data after trimming if afterTrimming != str(None): tag_trimming, fs_trimming = readFasta(afterTrimming) bigFamilies = numpy.where(fs_trimming > 20)[0] fs_trimming[bigFamilies] = 22 list1.append(fs_trimming) colors.append("#DF0101") labels.append("after trimming") legend5 = "after trimming:" legend6 = "{:,}".format(len(tag_trimming)) plt.text(0.55, 0.09, legend5, size=11, transform=plt.gcf().transFigure) plt.text(0.88, 0.09, legend6, size=11, transform=plt.gcf().transFigure) ### data of tags aligned to reference genome if ref_genome != str(None): mut_array = readFileReferenceFree(ref_genome, " ") ### use only unique tags that were alignment to the reference genome seq_mut, seqMut_index = numpy.unique(numpy.array(mut_array[:, 1]), return_index=True) # get family sizes quant_ab = [] for i in seq_mut: quant_ab.append(seqDic_ab.get(i)) quant_ba = [] for i in seq_mut: quant_ba.append(seqDic_ba.get(i)) quant_ab_ref = numpy.array(quant_ab) quant_ba_ref = numpy.array(quant_ba) quant_all_ref = numpy.concatenate((quant_ab_ref, quant_ba_ref)) bigFamilies = numpy.where(quant_all_ref > 20)[0] # group large family sizes quant_all_ref[bigFamilies] = 22 list1.append(quant_all_ref) colors.append("#04cec7") labels.append("after alignment\nto reference") legend7 = "after alignment to reference:" length_DCS_ref = len(quant_ba_ref) # count of duplex tags that were aligned to reference genome legend8 = "{:,}".format(length_DCS_ref) plt.text(0.55, 0.07, legend7, size=11, transform=plt.gcf().transFigure) plt.text(0.88, 0.07, legend8, size=11, transform=plt.gcf().transFigure) counts = plt.hist(list1, bins=range(-1, maximumX + 1), stacked=False, label=labels, color=colors, align="left", alpha=1, edgecolor="black", linewidth=1) ticks = numpy.arange(0, maximumX, 1) ticks1 = map(str, ticks) ticks1[len(ticks1) - 1] = ">20" plt.xticks(numpy.array(ticks), ticks1) if ref_genome != str(None): count = numpy.array( [v for k, v in sorted(Counter(quant_ab_ref).iteritems())]) # count all family sizes from all ab strands legend = "max. family size =\nabsolute frequency=\nrelative frequency=\n\ntotal nr. of reads (before)" plt.text(0.1, 0.105, legend, size=11, transform=plt.gcf().transFigure) legend = "AB\n{}\n{}\n{:.5f}\n\n{:,}" \ .format(max(quant_ab_ref), count[len(count) - 1], float(count[len(count) - 1]) / sum(count), sum(numpy.array(data_array[:, 0]).astype(int))) plt.text(0.3, 0.105, legend, size=11, transform=plt.gcf().transFigure) count2 = numpy.array( [v for k, v in sorted(Counter(quant_ba_ref).iteritems())]) # count all family sizes from all ba strands legend = "BA\n{}\n{}\n{:.5f}" \ .format(max(quant_ba_ref), count2[len(count2) - 1], float(count2[len(count2) - 1]) / sum(count2)) plt.text(0.4, 0.15, legend, size=11, transform=plt.gcf().transFigure) legend4 = "* In the plot, the family sizes of ab and ba strands and of both duplex tags were used.\nWhereas the total numbers indicate only the single count of the formed duplex tags." plt.text(0.1, 0.02, legend4, size=11, transform=plt.gcf().transFigure) plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True) plt.title("Family size distribution of tags from various steps of the Du Novo pipeline", fontsize=14) plt.xlabel("Family size", fontsize=14) plt.ylabel("Absolute Frequency", fontsize=14) plt.grid(b=True, which="major", color="#424242", linestyle=":") plt.margins(0.01, None) pdf.savefig(fig, bbox_inch="tight") plt.close() # write information about plot into a csv file output_file.write("Dataset:{}{}\n".format(sep, SSCS_file_name)) if ref_genome != str(None): output_file.write("{}AB{}BA\n".format(sep, sep)) output_file.write("max. family size:{}{}{}{}\n".format(sep, max(quant_ab_ref), sep, max(quant_ba_ref))) output_file.write( "absolute frequency:{}{}{}{}\n".format(sep, count[len(count) - 1], sep, count2[len(count2) - 1])) output_file.write( "relative frequency:{}{:.3f}{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count), sep, float(count2[len(count2) - 1]) / sum(count2))) output_file.write("\n\ntotal nr. of reads{}{}\n".format(sep, sum(numpy.array(data_array[:, 0]).astype(int)))) output_file.write("\n\nValues from family size distribution\n") if afterTrimming == str(None) and ref_genome == str(None): if afterTrimming == str(None): output_file.write( "{}before SSCS buidling{}after DCS building\n".format(sep, sep)) elif ref_genome == str(None): output_file.write( "{}before SSCS building{}atfer DCS building\n".format(sep, sep)) for fs, sscs, dcs in zip(counts[1][2:len(counts[1])], counts[0][0][2:len(counts[0][0])], counts[0][1][2:len(counts[0][1])]): if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write( "FS{}{}{}{}{}\n".format(fs, sep, int(sscs), sep, int(dcs))) output_file.write( "sum{}{}{}{}\n".format(sep, int(sum(counts[0][0])), sep, int(sum(counts[0][1])))) elif afterTrimming == str(None) or ref_genome == str(None): if afterTrimming == str(None): output_file.write( "{}before SSCS buidling{}after DCS building{}after alignment to reference\n".format(sep, sep, sep)) elif ref_genome == str(None): output_file.write( "{}before SSCS building{}atfer DCS building{}after trimming\n".format(sep, sep, sep)) for fs, sscs, dcs, reference in zip(counts[1][2:len(counts[1])], counts[0][0][2:len(counts[0][0])], counts[0][1][2:len(counts[0][1])],counts[0][2][2:len(counts[0][2])]): if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write( "FS{}{}{}{}{}{}{}\n".format(fs, sep, int(sscs), sep, int(dcs), sep, int(reference))) output_file.write( "sum{}{}{}{}{}{}\n".format(sep, int(sum(counts[0][0])), sep, int(sum(counts[0][1])), sep, int(sum(counts[0][2])))) else: output_file.write( "{}before SSCS building{}after DCS building{}after trimming{}after alignment to reference\n".format( sep, sep, sep, sep)) for fs, sscs, dcs, trim, reference in zip(counts[1][2:len(counts[1])], counts[0][0][2:len(counts[0][0])], counts[0][1][2:len(counts[0][1])], counts[0][2][2:len(counts[0][2])], counts[0][3][2:len(counts[0][3])]): if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write( "FS{}{}{}{}{}{}{}{}{}\n".format(fs, sep, int(sscs), sep, int(dcs), sep, int(trim), sep, int(reference))) output_file.write( "sum{}{}{}{}{}{}{}{}\n".format(sep, int(sum(counts[0][0])), sep, int(sum(counts[0][1])), sep, int(sum(counts[0][2])), sep, int(sum(counts[0][3])))) output_file.write("\n\nIn the plot, the family sizes of ab and ba strands and of both duplex tags were used.\nWhereas the total numbers indicate only the single count of the formed duplex tags.\n") output_file.write("total nr. of tags (unique, FS>=1){}{}\n".format(sep, len(seq_unique_FS))) output_file.write("DCS (before SSCS building, FS>=1){}{}\n".format(sep, len(duplTags))) output_file.write("total nr. of tags (unique, FS>=3){}{}\n".format(sep, len(seq_unique_FS3))) output_file.write("DCS (before SSCS building, FS>=3){}{}\n".format(sep, len(d2))) output_file.write("after DCS building{}{}\n".format(sep, len(tag_consensus))) if afterTrimming != str(None): output_file.write("after trimming{}{}\n".format(sep, len(tag_trimming))) if ref_genome != str(None): output_file.write("after alignment to reference{}{}\n".format(sep, length_DCS_ref)) print("Files successfully created!") if __name__ == '__main__': sys.exit(compare_read_families_read_loss(sys.argv))