Mercurial > repos > mheinzl > fsd_regions
view fsd_regions.py @ 9:eabfdc012d7b draft
planemo upload for repository https://github.com/monikaheinzl/duplexanalysis_galaxy/tree/master/tools/fsd_regions commit 31f11c1cb3303d741ee11a25903c3cc42a23f30d
author | mheinzl |
---|---|
date | Mon, 26 Nov 2018 04:25:26 -0500 |
parents | 6c2608e8d094 |
children | 37db9decb5d0 |
line wrap: on
line source
#!/usr/bin/env python # Family size distribution of tags which were aligned to the reference genome # # Author: Monika Heinzl, Johannes-Kepler University Linz (Austria) # Contact: monika.heinzl@edumail.at # # Takes at least one TABULAR file with tags before the alignment to the SSCS # and a TXT with tags of reads that overlap the regions of the reference genome as input. # The program produces a plot which shows the distribution of family sizes of the tags from the input files and # a tabular file with the data of the plot. # USAGE: python FSD_regions_1.6_FINAL.py --inputFile filenameSSCS --inputName1 filenameSSCS --ref_genome filenameRefGenome --output_tabular outptufile_name_tabular --output_pdf outptufile_name_pdf import argparse import re import sys from collections import OrderedDict import matplotlib.pyplot as plt import numpy from matplotlib.backends.backend_pdf import PdfPages plt.switch_backend('agg') def readFileReferenceFree(file, delim): with open(file, 'r') as dest_f: data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter=delim, comments='#', dtype='string') return(data_array) def make_argparser(): parser = argparse.ArgumentParser(description='Family Size Distribution of tags which were aligned to regions of the reference genome') parser.add_argument('--inputFile', help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName1') parser.add_argument('--ref_genome', help='TXT File with tags of reads that overlap the region.') parser.add_argument('--output_pdf', default="data.pdf", type=str, help='Name of the pdf and tabular file.') parser.add_argument('--output_tabular', default="data.tabular", type=str, help='Name of the pdf and tabular file.') return parser def compare_read_families_refGenome(argv): parser = make_argparser() args = parser.parse_args(argv[1:]) firstFile = args.inputFile name1 = args.inputName1 name1 = name1.split(".tabular")[0] refGenome = args.ref_genome title_file = args.output_pdf title_file2 = args.output_tabular sep = "\t" with open(title_file2, "w") as output_file, PdfPages(title_file) as pdf: data_array = readFileReferenceFree(firstFile, "\t") mut_array = readFileReferenceFree(refGenome, " ") group = numpy.array(mut_array[:, 0]) seq_mut = numpy.array(mut_array[:, 1]) seq = numpy.array(data_array[:, 1]) tags = numpy.array(data_array[:, 2]) quant = numpy.array(data_array[:, 0]).astype(int) all_ab = seq[numpy.where(tags == "ab")[0]] all_ba = seq[numpy.where(tags == "ba")[0]] quant_ab = quant[numpy.where(tags == "ab")[0]] quant_ba = quant[numpy.where(tags == "ba")[0]] seqDic_ab = dict(zip(all_ab, quant_ab)) seqDic_ba = dict(zip(all_ba, quant_ba)) if re.search('_(\d)+_(\d)+$', str(mut_array[0,0])) is None: seq_mut, seqMut_index = numpy.unique(numpy.array(mut_array[:, 1]), return_index=True) group = mut_array[seqMut_index,0] mut_array = mut_array[seqMut_index,:] length_regions = len(seq_mut)*2 groupUnique, group_index = numpy.unique(group, return_index=True) groupUnique = groupUnique[numpy.argsort(group_index)] lst_ab = [] lst_ba = [] for i in seq_mut: lst_ab.append(seqDic_ab.get(i)) lst_ba.append(seqDic_ba.get(i)) quant_ab = numpy.array(lst_ab) quant_ba = numpy.array(lst_ba) quantAfterRegion = [] for i in groupUnique: dataAB = quant_ab[numpy.where(group == i)[0]] dataBA = quant_ba[numpy.where(group == i)[0]] bigFamilies = numpy.where(dataAB > 20)[0] dataAB[bigFamilies] = 22 bigFamilies = numpy.where(dataBA > 20)[0] dataBA[bigFamilies] = 22 quantAll = numpy.concatenate((dataAB, dataBA)) quantAfterRegion.append(quantAll) maximumX = numpy.amax(numpy.concatenate(quantAfterRegion)) minimumX = numpy.amin(numpy.concatenate(quantAfterRegion)) # PLOT plt.rc('figure', figsize=(11.69, 8.27)) # A4 format plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['ytick.labelsize'] = 14 plt.rcParams['patch.edgecolor'] = "black" fig = plt.figure() plt.subplots_adjust(bottom=0.3) colors = ["#6E6E6E", "#0431B4", "#5FB404", "#B40431", "#F4FA58", "#DF7401", "#81DAF5"] col = [] for i in range(0, len(groupUnique)): col.append(colors[i]) counts = plt.hist(quantAfterRegion, bins=range(minimumX, maximumX + 1), stacked=False, label=groupUnique, align="left", alpha=1, color=col, edgecolor="black", linewidth=1) ticks = numpy.arange(minimumX - 1, maximumX, 1) ticks1 = map(str, ticks) ticks1[len(ticks1) - 1] = ">20" plt.xticks(numpy.array(ticks), ticks1) count = numpy.bincount(map(int, quant_ab)) # original counts legend = "max. family size =\nabsolute frequency=\nrelative frequency=\n\ntotal nr. of reads=" plt.text(0.15, 0.105, legend, size=11, transform=plt.gcf().transFigure) legend = "AB\n{}\n{}\n{:.5f}\n\n{:,}" \ .format(max(map(int, quant_ab)), count[len(count) - 1], float(count[len(count) - 1]) / sum(count), sum(numpy.array(data_array[:, 0]).astype(int))) plt.text(0.35, 0.105, legend, size=11, transform=plt.gcf().transFigure) count2 = numpy.bincount(map(int, quant_ba)) # original counts legend = "BA\n{}\n{}\n{:.5f}" \ .format(max(map(int, quant_ba)), count2[len(count2) - 1], float(count2[len(count2) - 1]) / sum(count2)) plt.text(0.45, 0.15, legend, size=11, transform=plt.gcf().transFigure) plt.text(0.55, 0.22, "total nr. of tags=", size=11, transform=plt.gcf().transFigure) plt.text(0.75, 0.22, "{:,} ({:,})".format(length_regions, length_regions/2), size=11, transform=plt.gcf().transFigure) # legend4 = '* The total numbers indicate the count of the ab and ba tags per region.\nAn equal sign ("=") is used in the column ba tags, if the counts and the region are identical to the ab tags.' # plt.text(0.1, 0.02, legend4, size=11, transform=plt.gcf().transFigure) plt.text(0.75, 0.18, "total nr. of tags per region", size=11, transform=plt.gcf().transFigure) #space = numpy.arange(0, len(groupUnique), 0.02) s = 0 index_array = 0 for i, count in zip(groupUnique, quantAfterRegion): index_of_current_region = numpy.where(group == i)[0] plt.text(0.55, 0.14 - s, "{}=\n".format(i), size=11, transform=plt.gcf().transFigure) if re.search('_(\d)+_(\d)+$', str(mut_array[0, 0])) is None: nr_tags_ab = len(numpy.unique(mut_array[index_of_current_region, 1])) else: nr_tags_ab = len(mut_array[index_of_current_region, 1]) plt.text(0.75, 0.14 - s, "{:,}\n".format(nr_tags_ab), size=11, transform=plt.gcf().transFigure) s = s + 0.02 plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True) plt.xlabel("Family size", fontsize=14) plt.ylabel("Absolute Frequency", fontsize=14) plt.grid(b=True, which="major", color="#424242", linestyle=":") plt.margins(0.01, None) pdf.savefig(fig, bbox_inch="tight") plt.close() output_file.write("Dataset:{}{}\n".format(sep, name1)) output_file.write("{}AB{}BA\n".format(sep, sep)) output_file.write("max. family size:{}{}{}{}\n".format(sep, max(map(int, quant_ab)), sep, max(map(int, quant_ba)))) output_file.write("absolute frequency:{}{}{}{}\n".format(sep, count[len(count) - 1], sep, count2[len(count2) - 1])) output_file.write("relative frequency:{}{:.3f}{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count), sep, float(count2[len(count2) - 1]) / sum(count2))) output_file.write("total nr. of reads{}{}\n".format(sep, sum(numpy.array(data_array[:, 0]).astype(int)))) output_file.write("total nr. of tags{}{} ({})\n".format(sep, length_regions, length_regions/2)) output_file.write("\n\nValues from family size distribution\n") output_file.write("{}".format(sep)) for i in groupUnique: output_file.write("{}{}".format(i, sep)) output_file.write("\n") j = 0 for fs in counts[1][0:len(counts[1]) - 1]: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) if len(groupUnique) == 1: output_file.write("{}{}".format(int(counts[0][j]), sep)) else: for n in range(len(groupUnique)): output_file.write("{}{}".format(int(counts[0][n][j]), sep)) output_file.write("\n") j += 1 output_file.write("sum{}".format(sep)) if len(groupUnique) == 1: output_file.write("{}{}".format(int(sum(counts[0])), sep)) else: for i in counts[0]: output_file.write("{}{}".format(int(sum(i)), sep)) output_file.write("\n") output_file.write("\n\nIn the plot, both family sizes of the ab and ba strands were used.\nWhereas the total numbers indicate only the count of the tags per region.\n") output_file.write("\n\nRegion{}total nr. of tags per region\n".format(sep, sep)) for i, count in zip(groupUnique, quantAfterRegion): output_file.write("{}{}{}\n".format(i,sep,len(count) / 2)) print("Files successfully created!") if __name__ == '__main__': sys.exit(compare_read_families_refGenome(sys.argv))