Mercurial > repos > miller-lab > genome_diversity
view calclenchange.py @ 25:cba0d7a63b82
workaround for gd_genotype datatype
admix shift int -> float
author | Richard Burhans <burhans@bx.psu.edu> |
---|---|
date | Wed, 29 May 2013 13:49:19 -0400 |
parents | 2c498d40ecde |
children |
line wrap: on
line source
#!/usr/bin/env python # -*- coding: utf-8 -*- # # calclenchange.py # # Copyright 2011 Oscar Bedoya-Reina <oscar@niska.bx.psu.edu> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. import argparse,mechanize,os,sys from decimal import Decimal,getcontext from xml.etree.ElementTree import ElementTree,tostring import networkx as nx from copy import copy #method to rank the the pthways by mut. freq. def rankdN(ltfreqs): ordvals=sorted(ltfreqs)#sort and reverse freqs. #~ outrnk=[] tmpChng0,tmpOri,tmpMut,tmpPthw=ordvals.pop()#the highest possible value if tmpOri=='C': if tmpMut!='C': tmpChng0='C-%s'%tmpMut else: tmpChng0=Decimal('0') crank=1 outrnk.append([str(tmpChng0),str(tmpOri),str(tmpMut),str(crank),tmpPthw]) totalnvals=len(ordvals) cnt=0 while totalnvals>cnt: cnt+=1 tmpChng,tmpOri,tmpMut,tmpPthw=ordvals.pop() if tmpOri=='C': if tmpMut!='C': tmpChng='C-%s'%tmpMut else: tmpChng=Decimal('0') if tmpChng!=tmpChng0: crank=len(outrnk)+1 tmpChng0=tmpChng outrnk.append([str(tmpChng),str(tmpOri),str(tmpMut),str(crank),tmpPthw]) return outrnk #method to rank the the pthways by mut. freq. def rankdAvr(ltfreqs): ordvals=sorted(ltfreqs)#sort and reverse freqs. #~ outrnk={} tmpChng0,tmpOri,tmpMut,tmpPthw=ordvals.pop()#the highest possible value if tmpOri=='I': if tmpMut!='I': tmpChng0='I-%s'%tmpMut else: tmpChng0=Decimal('0') crank=1 outrnk[tmpPthw]='\t'.join([str(tmpChng0),str(tmpOri),str(tmpMut),str(crank)]) totalnvals=len(ordvals) cnt=0 while totalnvals>cnt: cnt+=1 tmpChng,tmpOri,tmpMut,tmpPthw=ordvals.pop() if tmpOri=='I': if tmpMut!='I': tmpChng='I-%s'%tmpMut else: tmpChng=Decimal('0') if tmpChng!=tmpChng0: crank=len(outrnk)+1 tmpChng0=tmpChng outrnk[tmpPthw]='\t'.join([str(tmpChng),str(tmpOri),str(tmpMut),str(crank)]) return outrnk #this method takes as input a list of pairs of edges(beginNod,endNod) and returns a list of nodes with indegree 0 and outdegree 0 def returnstartanendnodes(edges): listID0st=set()#starts listOD0en=set()#end for beginNod,endNod in edges:# O(n) listID0st.add(beginNod) listOD0en.add(endNod) startNdsID0=listID0st.difference(listOD0en) endNdsOD0=listOD0en.difference(listID0st) return startNdsID0,endNdsOD0 #~ Method to return nodes and edges def returnNodesNEdgesfKXML(fpthwKGXML): #~ tree = ElementTree() ptree=tree.parse(fpthwKGXML) #~ title=ptree.get('title') prots=ptree.findall('entry') reactns=ptree.findall('reaction') #~ edges,ndstmp=set(),set() nreactns=len(reactns) cr=0#count reacts while nreactns>cr: cr+=1 reactn=reactns.pop() mainid=reactn.get('id') ndstmp.add(mainid)#add node reacttyp=reactn.get('type') sbstrts=reactn.findall('substrate') while len(sbstrts)>0: csbstrt=sbstrts.pop() csbtsid=csbstrt.get('id') ndstmp.add(csbtsid)#add node if reacttyp=='irreversible': edges.add((csbtsid,mainid))#add edges elif reacttyp=='reversible': edges.add((mainid,csbtsid))#add edges edges.add((csbtsid,mainid))#add edges #~ prdcts=reactn.findall('product') while len(prdcts)>0: prdct=prdcts.pop() prodctid=prdct.get('id') ndstmp.add(prodctid)#add node if reacttyp=='irreversible': edges.add((mainid,prodctid))#add edges elif reacttyp=='reversible': edges.add((mainid,prodctid))#add edges edges.add((prodctid,mainid))#add edges #~ Nodes nprots=len(prots) cp=0#count prots dnodes={} while nprots>cp: cp+=1 prot=prots.pop() tmpProtnm=prot.get('id') if tmpProtnm in ndstmp: dnodes[prot.get('id')]=set(prot.get('name').split())#each genename for each Id return dnodes,edges,title #~ make calculation on pathways def rtrnAvrgLen(edges,strNds,endNds): wG=nx.DiGraph()#reference graph wG.add_edges_from(edges) dPairsSrcSnks=nx.all_pairs_shortest_path_length(wG)#dictionary between sources and sink and length nstartNdsID0=len(strNds) cstrtNds=0 nPaths=0 lPathLen=[] while nstartNdsID0>cstrtNds: cStartNd=strNds.pop()#current start node dEndNdsLen=dPairsSrcSnks.pop(cStartNd) for cendNd in dEndNdsLen: if cendNd in endNds: lPathLen.append(dEndNdsLen[cendNd]) nPaths+=1 cstrtNds+=1 AvrgPthLen=0 if nPaths!=0: AvrgPthLen=Decimal(sum(lPathLen))/Decimal(str(nPaths)) return nPaths,AvrgPthLen def main(): parser = argparse.ArgumentParser(description='Rank pathways based on the change in length and number of paths connecting sources and sinks.') parser.add_argument('--loc_file',metavar='correlational database',type=str,help='correlational database') parser.add_argument('--species',metavar='species name',type=str,help='the species of interest in loc_file') parser.add_argument('--output',metavar='output TXT file',type=str,help='the output file with the table in txt format. Column 1 is the diference between column 2 and column 3, Column 2 is the pathway average length (between sources and sinks) including the genes in the input list, Column 3 is the pathway average length EXCLUDING the genes in the input list, Column 4 is the rank based on column 1. Column 5 is the diference between column 6 and column 7, Column 6 is the number of paths between sources and sinks, including the genes in the input list, Column 7 is the number of paths between sources and sinks EXCLUDING the genes in the input list, Column 8 is the rank based on column 5. Column 9 I the pathway name' ) parser.add_argument('--posKEGGclmn',metavar='column number',type=int,help='the column with the KEGG pathway code/name') parser.add_argument('--KEGGgeneposcolmn',metavar='column number',type=int,help='column with the KEGG gene code') parser.add_argument('--input',metavar='input TXT file',type=str,help='the input file with the table in txt format') #~ #~Open arguments class C(object): pass fulargs=C() parser.parse_args(sys.argv[1:],namespace=fulargs) #test input vars inputf,loc_file,species,output,posKEGGclmn,Kgeneposcolmn=fulargs.input,fulargs.loc_file,fulargs.species,fulargs.output,fulargs.posKEGGclmn,fulargs.KEGGgeneposcolmn posKEGGclmn-=1#correct pos Kgeneposcolmn-=1 #~ Get the extra variables crDB=[x.split() for x in open(loc_file).read().splitlines() if x.split()[0]==species][0] sppPrefx,dinput=crDB[1],crDB[2] #~ set decimal positions getcontext().prec = 3 #make a dictionary of valid genes dKEGGcPthws=dict([(x.split('\t')[Kgeneposcolmn],set([y.split('=')[0] for y in x.split('\t')[posKEGGclmn].split('.')])) for x in open(inputf).read().splitlines()[1:] if x.strip()]) sdGenes=set([x for x in dKEGGcPthws.keys() if x.find('.')>-1]) while True:#to crrect names with more than one gene try: mgenes=sdGenes.pop() pthwsAssotd=dKEGGcPthws.pop(mgenes) mgenes=mgenes.split('.') for eachg in mgenes: dKEGGcPthws[eachg]=pthwsAssotd except: break #~ lPthwsF=[x for x in os.listdir(dinput) if x.find('.xml')>-1 if x not in ['cfa04070.xml']] nPthws=len(lPthwsF) cPthw=0 lPthwPthN=[]#the output list for number of paths lPthwPthAvr=[]#the output list for the length of paths #~ while cPthw<nPthws: cPthw+=1 KEGGpathw=lPthwsF.pop() comdKEGGpathw=KEGGpathw.split('.')[0] tmpddGenrcgenPresent=set() sKEGGc=dKEGGcPthws.keys() lsKEGGc=len(sKEGGc) ctPthw=0 while ctPthw < lsKEGGc:#to save memory eachK=sKEGGc.pop() alPthws=dKEGGcPthws[eachK] if comdKEGGpathw in alPthws: tmpddGenrcgenPresent.add(':'.join([sppPrefx,eachK])) ctPthw+=1 #~ Make graph calculations dnodes,edges,title=returnNodesNEdgesfKXML(open(os.path.join(dinput,KEGGpathw))) startNdsID0,endNdsOD0=returnstartanendnodes(edges) startNdsOri=copy(startNdsID0) #~ nPaths='C'#stands for circuit AvrgPthLen='I'#stand for infinite if len(startNdsID0)>0 and len(endNdsOD0)>0: nPaths,AvrgPthLen=rtrnAvrgLen(edges,startNdsID0,endNdsOD0) #~ work with the genes in the list genestodel=set() lnodes=len(dnodes) sNds=set(dnodes) ctPthw=0 while ctPthw<lnodes: ctPthw+=1 cNod=sNds.pop() sgenes=dnodes.pop(cNod) if len(sgenes.intersection(tmpddGenrcgenPresent))==len(sgenes): genestodel.add(cNod) #~ del nodes from graph edges wnPaths,wAvrgPthLen=copy(nPaths),copy(AvrgPthLen) if len(genestodel)>0: wedges=set([x for x in edges if len(set(x).intersection(genestodel))==0]) wstartNds,wendNds=returnstartanendnodes(wedges) if nPaths!='C': wstartNds=[x for x in wstartNds if x in startNdsOri] wendNds=[x for x in wendNds if x in endNdsOD0] if len(wstartNds)>0 and len(wendNds)>0: wnPaths,wAvrgPthLen=rtrnAvrgLen(wedges,wstartNds,wendNds) #~ Calculate the differences orNP,mutNP,oriLen,mutLen=nPaths,wnPaths,AvrgPthLen,wAvrgPthLen if nPaths=='C': orNP=Decimal('1000') oriLen=Decimal('1000') if wnPaths=='C': mutNP=Decimal('1000') mutLen=Decimal('1000') lPthwPthN.append([orNP-mutNP,nPaths,wnPaths,'='.join([comdKEGGpathw,title])])#print nPaths,AvrgPthLen lPthwPthAvr.append([oriLen-mutLen,AvrgPthLen,wAvrgPthLen,'='.join([comdKEGGpathw,title])])#print nPaths,AvrgPthLen doutrnkPthN=rankdN(lPthwPthN) doutrnkPthAvr=rankdAvr(lPthwPthAvr) #~ sall=['\t'.join([doutrnkPthAvr[x[4]],'\t'.join(x)]) for x in doutrnkPthN] salef=open(output,'w') salef.write('\n'.join(sall)) salef.close() return 0 if __name__ == '__main__': main()