Mercurial > repos > mingchen0919 > aurora_deseq2
view rmarkdown_report.Rmd @ 0:55d2db17c67c draft
planemo upload commit 841d8b22bf9f1aaed6bfe8344b60617f45b275b2-dirty
author | mingchen0919 |
---|---|
date | Fri, 14 Dec 2018 00:21:26 -0500 |
parents | |
children |
line wrap: on
line source
--- title: 'Aurora DESeq2 Report' output: html_document: highlight: pygments --- ```{r setup, include=FALSE, warning=FALSE, message=FALSE} knitr::opts_chunk$set(error = TRUE, echo = FALSE) ``` ```{css, echo=FALSE} pre code, pre, code { white-space: pre !important; overflow-x: scroll !important; word-break: keep-all !important; word-wrap: initial !important; } ``` ```{r, echo=FALSE} # to make the css theme to work, <link></link> tags cannot be added directly # as <script></script> tags as below. # it has to be added using a code chunk with the htmltool functions!!! css_link = tags$link() css_link$attribs = list(rel="stylesheet", href="vakata-jstree-3.3.5/dist/themes/default/style.min.css") css_link ``` ```{r, eval=FALSE, echo=FALSE} # this code chunk is purely for adding comments # below is to add jQuery and jstree javascripts ``` <script src="vakata-jstree-3.3.5/dist/jstree.min.js"></script> ```{r, eval=FALSE, echo=FALSE} # this code chunk is purely for adding comments # javascript code below is to build the file tree interface # see this for how to implement opening hyperlink: https://stackoverflow.com/questions/18611317/how-to-get-i-get-leaf-nodes-in-jstree-to-open-their-hyperlink-when-clicked-when ``` <script> jQuery(function () { // create an instance when the DOM is ready jQuery('#jstree').jstree().bind("select_node.jstree", function (e, data) { window.open( data.node.a_attr.href, data.node.a_attr.target ) }); }); </script> ```{r, eval=FALSE, echo=FALSE} --- # ADD YOUR DATA ANALYSIS CODE AND MARKUP TEXT BELOW TO EXTEND THIS R MARKDOWN FILE --- ``` ## DESeq2 analysis ```{r echo=FALSE} # import count data count_data = read.csv(opt$X_A, row.names = 1, header = TRUE) # import column data coldata = read.csv(opt$X_B, row.names = 1, header = TRUE)[colnames(count_data),,drop=FALSE] ``` ```{r} f = gsub('~', '~ 1 +', opt$X_C) # build formula dds = DESeqDataSetFromMatrix(countData = count_data, colData = coldata, design = formula(f)) # prefiltering keep <- rowSums(counts(dds)) >= 10 dds <- dds[keep,] # Run DESeq if (opt$X_T == 'LRT') { reduced_f = gsub(paste0('\\+\\s*', opt$X_D), '', f) dds = DESeq(dds, test=opt$X_T, fitType = opt$X_H, reduced = formula(reduced_f)) } else { dds = DESeq(dds, test=opt$X_T, fitType = opt$X_H) } ## Differential expression test results res = results(dds, contrast = c(opt$X_D, opt$X_E, opt$X_F), alpha = opt$X_I) DT::datatable(as.data.frame(res)) ``` ```{r} # save all padj sorted res to tool output directory padj_sorted_res = res[order(res$padj), ] write.table(padj_sorted_res, file = paste0(opt$X_d, '/padj-sorted-genes.txt'), quote = FALSE) # save significant genes to a file in tool output directory sig_res = res[(res$padj < opt$X_I) & !is.na(res$padj), ] sig_res_sorted = sig_res[order(sig_res$padj), ] sig_res_sorted$feature_id = rownames(sig_res_sorted) n_col = ncol(sig_res_sorted) sig_res_sorted = sig_res_sorted[, c(n_col, 1:(n_col - 1))] write.table(sig_res_sorted, file = paste0(opt$X_d, '/padj-sorted-significant-genes.txt'), quote = FALSE, row.names = FALSE) ``` ## MA-plot ```{r warning=FALSE} log_fold_change = res$log2FoldChange base_mean = res$baseMean significant = res$padj significant[significant < 0.1] = 'yes' significant[significant != 'yes'] = 'no' maplot_df = data.frame(log_fold_change, base_mean, significant) maplot_df = maplot_df[!is.na(maplot_df$significant), ] p = ggplot(data = maplot_df) + geom_point(mapping = aes(log(base_mean), log_fold_change, color = significant), size = 0.5) + scale_color_manual(name = 'Significant', values = c('no' = 'black', 'yes' = 'red'), labels = c('No', 'Yes')) + xlab('Log base mean') + ylab('Log fold change') + theme_classic() plotly::ggplotly(p) ``` ## Heatmap of count matrix ```{r} ntd <- normTransform(dds) select <- order(rowMeans(counts(dds,normalized=TRUE)), decreasing=TRUE)[1:20] df <- as.data.frame(colData(dds)[, -ncol(colData(dds))]) pheatmap(assay(ntd)[select,], annotation_col=df) ``` ## Principle component analysis plot ```{r} vsd <- vst(dds, blind=FALSE) p = plotPCA(vsd, intgroup=c(opt$X_D)) + scale_color_discrete(name = 'Group') + theme_classic() ggplotly(p) ```