Mercurial > repos > mingchen0919 > aurora_skewer_site
comparison 01_skewer_analysis.Rmd @ 0:a42e58c71e5b draft default tip
planemo upload commit 841d8b22bf9f1aaed6bfe8344b60617f45b275b2-dirty
author | mingchen0919 |
---|---|
date | Sun, 30 Dec 2018 12:55:49 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:a42e58c71e5b |
---|---|
1 --- | |
2 title: 'Skewer Analysis' | |
3 output: | |
4 html_document: | |
5 highlight: pygments | |
6 --- | |
7 | |
8 ```{r setup, include=FALSE, warning=FALSE, message=FALSE} | |
9 knitr::opts_chunk$set(error = TRUE, echo = FALSE) | |
10 ``` | |
11 | |
12 | |
13 ## Job script | |
14 | |
15 ```{bash echo=FALSE} | |
16 sh ${TOOL_INSTALL_DIR}/build-and-run-job-scripts.sh | |
17 ``` | |
18 | |
19 ```{r echo=FALSE,warning=FALSE,results='asis'} | |
20 # display content of the job-script.sh file. | |
21 cat('```bash\n') | |
22 cat(readLines(paste0(Sys.getenv('REPORT_FILES_PATH'), '/job-1-script.sh')), sep = '\n') | |
23 cat('\n```') | |
24 ``` | |
25 | |
26 | |
27 # Results summary | |
28 | |
29 ## Reads processing summary | |
30 | |
31 ```{r echo=TRUE} | |
32 log = readLines(paste0(Sys.getenv('REPORT_FILES_PATH'), '/trim-trimmed.log')) | |
33 start_line = grep('read.+processed; of these:', log) | |
34 end_line = grep('untrimmed.+available after processing', log) | |
35 processing_summary = gsub('(\\d+) ', '\\1\t', log[start_line:end_line]) | |
36 processing_summary_df = do.call(rbind, strsplit(processing_summary, '\t')) | |
37 colnames(processing_summary_df) = c('Total reads:', processing_summary_df[1,1]) | |
38 knitr::kable(processing_summary_df[-1, ]) | |
39 ``` | |
40 | |
41 ## Length distribution of reads after trimming | |
42 | |
43 ```{r echo=TRUE, message=FALSE, warning=FALSE} | |
44 start_line = grep('length count percentage', log) | |
45 len_dist = log[(start_line):length(log)] | |
46 len_dist = do.call(rbind, strsplit(len_dist, '\t')) | |
47 columns = len_dist[1, ] | |
48 len_dist = as.data.frame(len_dist[-1, ]) | |
49 colnames(len_dist) = columns | |
50 | |
51 library(plotly) | |
52 library(ggplot2) | |
53 len_dist$count = as.numeric(len_dist$count) | |
54 labels = as.character(len_dist$length) | |
55 len_dist$length = 1:nrow(len_dist) | |
56 pp = ggplot(data = len_dist, aes(length, count)) + | |
57 geom_line(color='red') + | |
58 scale_x_continuous(name = 'Length', | |
59 breaks = 1:nrow(len_dist), | |
60 labels = labels) + | |
61 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
62 ylab('Count') + | |
63 ggtitle('Length distribution') | |
64 ggplotly(pp) | |
65 ``` |