Mercurial > repos > mingchen0919 > rmarkdown_fastqc_report
diff fastqc_report.Rmd @ 14:2efa46ce2c4c draft
upgrade fastqc_report
author | mingchen0919 |
---|---|
date | Wed, 18 Oct 2017 22:06:39 -0400 |
parents | e629c2288316 |
children | d1d20f341632 |
line wrap: on
line diff
--- a/fastqc_report.Rmd Mon Oct 16 21:33:31 2017 -0400 +++ b/fastqc_report.Rmd Wed Oct 18 22:06:39 2017 -0400 @@ -1,383 +1,72 @@ --- -title: "Fastqc report: short reads quality evaluation" -author: "Ming Chen" -output: html_document +title: 'HTML report title' +output: + html_document: + number_sections: true + toc: true + theme: cosmo + highlight: tango --- -```{r setup, include=FALSE} -knitr::opts_chunk$set(echo=ECHO, warning=FALSE, message=FALSE) -library(plyr) -library(stringr) -library(dplyr) -library(highcharter) -library(DT) -library(reshape2) -library(plotly) -library(formattable) -library(htmltools) +```{r setup, include=FALSE, warning=FALSE, message=FALSE} +knitr::opts_chunk$set( + echo = ECHO +) ``` -```{bash 'create output directory', echo=FALSE} -# create extra files directory. very important! -mkdir REPORT_OUTPUT_DIR -``` +# Fastqc Analysis -# Fastqc analysis -```{bash 'copy data to working directory', echo=FALSE} -# Copy uploaded data to the working directory +* Copy fastq files to job working directory + +```{bash 'copy files'} for f in $(echo READS | sed "s/,/ /g") do cp $f ./ done ``` +* Run fastqc -```{bash 'run fastqc', echo=FALSE} +```{bash 'run fastqc'} for r in $(ls *.dat) do - fastqc -o REPORT_OUTPUT_DIR $r > /dev/null 2>&1 + fastqc -o REPORT_DIR $r > /dev/null 2>&1 done ``` -## Fastqc html reports +* Create links to original HTML reports -Below are links to ***Fastqc*** original html reports. ```{r 'html report links'} html_report_list = list() -html_files = list.files('REPORT_OUTPUT_DIR', pattern = '.*html') +html_files = list.files('REPORT_DIR', pattern = '.*html') for (i in html_files) { html_report_list[[i]] = tags$li(tags$a(href=i, i)) } tags$ul(html_report_list) ``` - -## Parsing fastqc data - -```{bash echo=FALSE} -##==== copy fastqc generated zip files from report output directory to job work directory == -cp -r REPORT_OUTPUT_DIR/*zip ./ - -# create a file to store data file paths -echo "sample_id,file_path" > PWF_file_paths.txt # Pass, Warning, Fail -echo "sample_id,file_path" > PBQS_file_paths.txt # Per Base Quality Score -echo "sample_id,file_path" > PSQS_file_paths.txt # Per Sequence Quality Score -echo "sample_id,file_path" > PSGC_file_paths.txt # Per Sequence GC Content -echo "sample_id,file_path" > PBSC_file_paths.txt # Per Base Sequence Content -echo "sample_id,file_path" > PBNC_file_paths.txt # Per Base N Content -echo "sample_id,file_path" > SDL_file_paths.txt # Sequence Duplication Level -echo "sample_id,file_path" > SLD_file_paths.txt # Sequence Length Distribution -echo "sample_id,file_path" > KMC_file_paths.txt # Kmer Content - -for i in $(ls *.zip) -do - BASE=$(echo $i | sed 's/\(.*\)\.zip/\1/g') - echo $BASE - unzip ${BASE}.zip > /dev/null 2>&1 - - ##====== pass,warning,fail (WSF) ============= - awk '/^>>/ {print}' "$BASE"/fastqc_data.txt | grep -v 'END_MODULE' | sed 's/>>//' > "$BASE"-PWF.txt - echo "${BASE},${BASE}-PWF.txt" >> PWF_file_paths.txt +# Fastqc output summary - ##====== per base quality scores (PBQS) ====== - awk '/^>>Per base sequence quality/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PBQS.txt - echo "${BASE},${BASE}-PBQS.txt" >> PBQS_file_paths.txt - - ##====== per sequence quality scores (PSQS) - awk '/^>>Per sequence quality scores/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PSQS.txt - echo "${BASE},${BASE}-PSQS.txt" >> PSQS_file_paths.txt - - ##====== Per sequence GC content (PSGC) - awk '/^>>Per sequence GC content/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PSGC.txt - echo "${BASE},${BASE}-PSGC.txt" >> PSGC_file_paths.txt - - ##====== Per Base Sequence Content (PBSC) - awk '/^>>Per base sequence content/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PBSC.txt - echo "${BASE},${BASE}-PBSC.txt" >> PBSC_file_paths.txt - - ##====== Per Base N Content (PBNC) - awk '/^>>Per base N content/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PBNC.txt - echo "${BASE},${BASE}-PBNC.txt" >> PBNC_file_paths.txt - - ##====== Sequence Duplication Level (SDL) - awk '/^>>Sequence Duplication Levels/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-SDL.txt - echo "${BASE},${BASE}-SDL.txt" >> SDL_file_paths.txt - - ##====== Sequence Length Distribution (SLD) - awk '/^>>Sequence Length Distribution/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-SLD.txt - echo "${BASE},${BASE}-SLD.txt" >> SLD_file_paths.txt - - ##====== Kmer Content ============ - awk '/^>>Kmer Content/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-KMC.txt - echo "${BASE},${BASE}-KMC.txt" >> KMC_file_paths.txt - -done -``` +* Define a function to extract outputs for each module from fastqc output - -## Evaluation Overview - -```{r 'overview'} -PWF_file_paths = read.csv('PWF_file_paths.txt', - header = TRUE, stringsAsFactors = FALSE) -rm('PWF_df') -for(i in 1:nrow(PWF_file_paths)) { - file_path = PWF_file_paths[i,2] - pwf_df = read.csv(file_path, - sep='\t', header=FALSE, stringsAsFactors = FALSE) - colnames(pwf_df) = c('item', PWF_file_paths[i,1]) - if (!exists('PWF_df')) { - PWF_df = pwf_df - } else { - PWF_df = cbind(PWF_df, pwf_df[,2,drop=FALSE]) - } -} -``` - -```{r} -my_icon = c('ok', 'remove', 'star') -names(my_icon) = c('pass', 'fail', 'warn') -evaluate_list = list() -for (i in colnames(PWF_df)[-1]) { - evaluate_list[[i]] = formatter( - "span", - style = x ~ style("background-color" = ifelse(x =='pass', '#9CD027', ifelse(x == 'fail', '#CC0000', '#FF4E00')), - "color" = "white", - "width" = "50px", - "float" = "left", - "padding-right" = "5px") - ) -} - -formattable(PWF_df, evaluate_list) -``` - - -## Per Base Quality Scores - -```{r} -PBQS_df = data.frame() -PBQS_file_paths = read.csv('PBQS_file_paths.txt', - header = TRUE, stringsAsFactors = FALSE) -for(i in 1:nrow(PBQS_file_paths)) { - # file_path = paste0('REPORT_OUTPUT_DIR/', PBQS_file_paths[i,2]) - file_path = PBQS_file_paths[i,2] - pbqs_df = read.csv(file_path, - sep='\t', header=TRUE, stringsAsFactors = FALSE) %>% - mutate(Base1=as.numeric(str_split_fixed(X.Base, '-', 2)[,1]), - Base2=as.numeric(str_split_fixed(X.Base, '-', 2)[,2])) %>% - (function (df) { - df1 = select(df, -Base2) - df2 = select(df, -Base1) %>% filter(Base2 != '') - colnames(df1) = c(colnames(df1)[1:7], 'Base') - colnames(df2) = c(colnames(df2)[1:7], 'Base') - res = rbind(df1, df2) %>% arrange(Base) - return(res) - }) - pbqs_df$sample_id = rep(PBQS_file_paths[i,1], nrow(pbqs_df)) - PBQS_df = rbind(PBQS_df, pbqs_df) +```{r 'function definition'} +extract_data_module = function(fastqc_data, module_name) { + f = readLines(fastqc_data) + start_line = grep(module_name, f) + end_module_lines = grep('END_MODULE', f) + end_line = end_module_lines[which(end_module_lines > start_line)[1]] + module_data = f[(start_line+1):(end_line-1)] + writeLines(module_data, 'temp.txt') + read.csv('temp.txt', sep = '\t') } ``` - -```{r} -# datatable(PBQS_df) -max_phred = max(PBQS_df$Mean) + 10 -hchart(PBQS_df, "line", hcaes(x = Base, y = Mean, group = sample_id)) %>% - hc_title( - text = "Per Base Quality Score" - ) %>% - hc_yAxis( - title = list(text = "Mean Base Quality Score"), - min = 0, - max = max_phred, - plotLines = list( - list(label = list(text = "Phred Score = 27"), - width = 2, - dashStyle = "dash", - color = "green", - value = 27), - list(label = list(text = "Phred Score = 20"), - width = 2, - color = "red", - value = 20) - ) - ) %>% - hc_exporting(enabled = TRUE) -``` - - -## Per Base N Content +## -```{r} -PBNC_df = data.frame() -PBNC_file_paths = read.csv('PBNC_file_paths.txt', - header = TRUE, stringsAsFactors = FALSE) -for(i in 1:nrow(PBNC_file_paths)) { - # file_path = paste0('REPORT_OUTPUT_DIR/', PBNC_file_paths[i,2]) - file_path = PBNC_file_paths[i,2] - pbnc_df = read.csv(file_path, - sep='\t', header=TRUE, stringsAsFactors = FALSE) %>% - mutate(Base1=as.numeric(str_split_fixed(X.Base, '-', 2)[,1]), - Base2=as.numeric(str_split_fixed(X.Base, '-', 2)[,2])) %>% - (function (df) { - df1 = select(df, -Base2) - df2 = select(df, -Base1) %>% filter(Base2 != '') - colnames(df1) = c(colnames(df1)[1:2], 'Base') - colnames(df2) = c(colnames(df2)[1:2], 'Base') - res = rbind(df1, df2) %>% arrange(Base) - return(res) - }) - pbnc_df$sample_id = rep(PBNC_file_paths[i,1], nrow(pbnc_df)) - PBNC_df = rbind(PBNC_df, pbnc_df) -} -``` - +# Session Info -```{r} -PBNC_df$N.Count = PBNC_df$N.Count * 100 -max_phred = max(PBNC_df$N.Count) + 5 -hchart(PBNC_df, "line", hcaes(x = as.character(Base), y = N.Count, group = sample_id)) %>% - hc_title( - text = "Per Base N Content" - ) %>% - hc_xAxis( - title = list(text = "Base Position") - ) %>% - hc_yAxis( - title = list(text = "N %"), - plotLines = list( - list(label = list(text = "N = 5%"), - width = 2, - dashStyle = "dash", - color = "red", - value = 5) - ) - ) %>% - hc_exporting(enabled = TRUE) -``` - - - - -## Per Sequence Quality Scores - -```{r} -PSQS_df = data.frame() -PSQS_file_paths = read.csv('PSQS_file_paths.txt', - header = TRUE, stringsAsFactors = FALSE) -for(i in 1:nrow(PSQS_file_paths)) { - # file_path = paste0('REPORT_OUTPUT_DIR/', PSQS_file_paths[i,2]) - file_path = PSQS_file_paths[i,2] - psqs_df = read.csv(file_path, - sep='\t', header=TRUE, stringsAsFactors = FALSE) - psqs_df$sample_id = rep(PSQS_file_paths[i,1], nrow(psqs_df)) - PSQS_df = rbind(PSQS_df, psqs_df) -} +```{r 'session info'} +sessionInfo() ``` - -```{r} -max_phred = max(PSQS_df$X.Quality) + 5 -hchart(PSQS_df, "line", hcaes(x = X.Quality, y = Count, group = sample_id)) %>% - hc_title( - text = "Per Sequence Quality Score" - ) %>% - hc_xAxis( - title = list(text = "Mean Sequence Quality Score"), - min = 0, - max = max_phred, - plotLines = list( - list(label = list(text = "Phred Score = 27"), - width = 2, - dashStyle = "dash", - color = "green", - value = 27), - list(label = list(text = "Phred Score = 20"), - width = 2, - color = "red", - value = 20) - ) - ) %>% - hc_exporting(enabled = TRUE) -``` - - -## Per Sequence GC Content - - -```{r} -PSGC_df = data.frame() -PSGC_file_paths = read.csv('PSGC_file_paths.txt', - header = TRUE, stringsAsFactors = FALSE) -for(i in 1:nrow(PSGC_file_paths)) { - # file_path = paste0('REPORT_OUTPUT_DIR/', PSGC_file_paths[i,2]) - file_path = PSGC_file_paths[i,2] - psgc_df = read.csv(file_path, - sep='\t', header=TRUE, stringsAsFactors = FALSE) - psgc_df$sample_id = rep(PSGC_file_paths[i,1], nrow(psgc_df)) - PSGC_df = rbind(PSGC_df, psgc_df) -} -``` - - -```{r} -max_phred = max(PSGC_df$Count) + 5 -hchart(PSGC_df, "line", hcaes(x = X.GC.Content, y = Count, group = sample_id)) %>% - hc_title( - text = "Per Sequence GC Content" - ) %>% - hc_xAxis( - title = list(text = "% GC") - ) %>% - hc_exporting(enabled = TRUE) -``` - - -## Per Base Sequence Content - -```{r} -PBSC_df = data.frame() -PBSC_file_paths = read.csv('PBSC_file_paths.txt', - header = TRUE, stringsAsFactors = FALSE) -for(i in 1:nrow(PBSC_file_paths)) { - # file_path = paste0('REPORT_OUTPUT_DIR/', PBSC_file_paths[i,2]) - file_path = PBSC_file_paths[i,2] - pbsc_df = read.csv(file_path, - sep='\t', header=TRUE, stringsAsFactors = FALSE) %>% - mutate(Base1=as.numeric(str_split_fixed(X.Base, '-', 2)[,1]), - Base2=as.numeric(str_split_fixed(X.Base, '-', 2)[,2])) %>% - (function (df) { - df1 = select(df, -Base2) - df2 = select(df, -Base1) %>% filter(Base2 != '') - colnames(df1) = c(colnames(df1)[1:5], 'Base') - colnames(df2) = c(colnames(df2)[1:5], 'Base') - res = rbind(df1, df2) %>% arrange(Base) - return(res) - }) - pbsc_df$sample_id = rep(PBSC_file_paths[i,1], nrow(pbsc_df)) - PBSC_df = rbind(PBSC_df, pbsc_df) -} -``` - - -```{r out.width="100%"} -PBSC_df_2 = select(PBSC_df, -X.Base) %>% - melt(id = c('Base', 'sample_id'), value.name = 'base_percentage') -p = ggplot(data = PBSC_df_2, aes(x = Base, y = base_percentage, group = variable, color = variable)) + - geom_line() + - facet_wrap(~ sample_id) -ggplotly(p) -``` - - -## References - -* Andrews, Simon. "FastQC: a quality control tool for high throughput sequence data." (2010): 175-176. -* Goecks, Jeremy, Anton Nekrutenko, and James Taylor. "Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences." Genome biology 11.8 (2010): R86. -* Afgan, Enis, et al. "The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update." Nucleic acids research (2016): gkw343. -* Highcharts. https://www.highcharts.com/. (access by May 26, 2017). -* R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. -* Joshua Kunst (2017). highcharter: A Wrapper for the 'Highcharts' Library. R package version 0.5.0. https://CRAN.R-project.org/package=highcharter -* Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec and Pedro Despouy (2017). plotly: Create Interactive Web Graphics via 'plotly.js'. R package version 4.6.0. https://CRAN.R-project.org/package=plotly