Mercurial > repos > mingchen0919 > rmarkdown_wgcna
view wgcna_eigengene_visualization.Rmd @ 6:05bcad4b5b4f draft default tip
minor fix function missing issue
author | mingchen0919 |
---|---|
date | Sun, 26 Nov 2017 11:04:08 -0500 |
parents | 4275479ada3a |
children |
line wrap: on
line source
--- title: 'WGCNA: eigengene visualization' output: html_document: number_sections: true toc: true theme: cosmo highlight: tango --- ```{r setup, include=FALSE, warning=FALSE, message=FALSE} knitr::opts_chunk$set( echo = ECHO ) ``` # Import workspace This step imports workspace from the **WGCNA: construct network** step. ```{r} fcp = file.copy("CONSTRUCT_NETWORK_WORKSPACE", "deseq.RData") load("deseq.RData") ``` # Gene modules {.tabset} ```{r} if(!is.na(SOFT_THRESHOLD_POWER)) soft_threshold_power = SOFT_THRESHOLD_POWER ``` ## Identify gene modules The gene network is constructed based on **soft threshold power = `r soft_threshold_power`** ```{r} gene_network = blockwiseModules(expression_data, power = soft_threshold_power, TOMType = "unsigned", minModuleSize = 30, reassignThreshold = 0, mergeCutHeight = 0.25, numericLabels = TRUE, pamRespectsDendro = FALSE, verbose = 3) ``` ```{r} modules = table(gene_network$colors) n_modules = length(modules) - 1 module_size_upper = modules[2] module_size_lower = modules[length(modules)] module_table = data.frame(model_label = c(0, 1:n_modules), gene_size = as.vector(modules)) datatable(t(module_table)) ``` The results above indicates that there are **`r n_modules` gene modules**, labeled 1 through `r length(n_modules)` in order of descending size. The largest module has **`r module_size_upper` genes**, and the smallest module has **`r module_size_lower` genes**. The label 0 is reserved for genes outside of all modules. ## Dendrogram and module plot ```{r} # Convert labels to colors for plotting module_colors = labels2colors(gene_network$colors) # Plot the dendrogram and the module colors underneath plotDendroAndColors(gene_network$dendrograms[[1]], module_colors[gene_network$blockGenes[[1]]], "Module colors", dendroLabels = FALSE, hang = 0.03, addGuide = TRUE, guideHang = 0.05) ``` # Gene module correlation We can calculate eigengenes and use them as representative profiles to quantify similarity of found gene modules. ```{r} n_genes = ncol(expression_data) n_samples = nrow(expression_data) ``` ```{r} diss_tom = 1-TOMsimilarityFromExpr(expression_data, power = soft_threshold_power) set.seed(123) select_genes = sample(n_genes, size = PLOT_GENES) select_diss_tom = diss_tom[select_genes, select_genes] # calculate gene tree on selected genes select_gene_tree = hclust(as.dist(select_diss_tom), method = 'average') select_module_colors = module_colors[select_genes] # transform diss_tom with a power to make moderately strong connections more visiable in the heatmap. plot_diss_tom = select_diss_tom^7 # set diagonal to NA for a nicer plot diag(plot_diss_tom) = NA ``` ```{r fig.align='center'} TOMplot(plot_diss_tom, select_gene_tree, select_module_colors, main = "Network heatmap") ``` # Eigengene visualization {.tabset} ## Eigengene dendrogram ```{r fig.align='center'} module_eigengenes = moduleEigengenes(expression_data, module_colors)$eigengenes plotEigengeneNetworks(module_eigengenes, "Eigengene dendrogram", plotHeatmaps = FALSE) ``` ## Eigengene adjacency heatmap ```{r fig.align='center'} plotEigengeneNetworks(module_eigengenes, "Eigengene adjacency heatmap", marHeatmap = c(2, 3, 2, 2), plotDendrograms = FALSE, xLabelsAngle = 90) ```