Mercurial > repos > mmonsoor > probmetab
comparison export.class.table-color-graph.R @ 0:e13ec2c3fabe draft
planemo upload commit 25fd6a739741295e3f434e0be0286dee61e06825
author | mmonsoor |
---|---|
date | Mon, 04 Jul 2016 04:29:25 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e13ec2c3fabe |
---|---|
1 #' export.class.table | |
2 #' | |
3 #' Builds a matrix with the probability for all mass to candidate compounds | |
4 #' assignments, by averaging the number of assignments obtained by the gibbs sampler algorithm | |
5 #' or ordering the compound candidates with the likelihood matrix. | |
6 #' | |
7 #' @param gibbsL a list of attributions and probabilities from gibbs.samp function. | |
8 #' @param reactionM data.frame with compound annotation information. | |
9 #' @param molIon non redundant ion annotation. | |
10 #' @param probM optionally to gibbsL, a matrix of likelihoods. | |
11 #' @param html logical, indicating whether a html file should be generated. This parameter uses the raw data to plot EICs and may be time consuming. | |
12 #' @param filename html file name, the default is "test". | |
13 #' @param burnIn how many samples of the gibbs sampler should be discarded. | |
14 #' @param linkPattern which pattern should be linked to compound id, for now we have | |
15 #' implemented "kegg", "pubchem" and "chebi" patterns. | |
16 #' @param m.test statistical test to compare mean differences. This option | |
17 #' is only available to single acquisition mode analysis, with options | |
18 #' "t.test" and "anova". | |
19 #' @param class1 if the m.test is "t.test" first class to compare in the test, | |
20 #' according with xcmsSet phenoData. | |
21 #' @param class2 if the m.test is "t.test" second class to compare in the test, | |
22 #' according with xcmsSet phenoData. | |
23 #' @param norm logical, if TRUE performs median normalization from (Anal. Chem. 2011, 83, 5864-5872). | |
24 #' @param DB data.frame table used to search compounds, with the field name to be incorporated in the html table. | |
25 #' @param prob how to calculate the probability to attribute a mass to a compound. | |
26 #' Default is "count", which divide the number of times each identity was | |
27 #' was attributed by the number of samples. Optionally the user could | |
28 #' choose to use the mean of the probabilities of the identity, "mean". | |
29 #' @return A list with a matrix "classTable" with attributions and probabilities and | |
30 #' indexes of selected masses from xcms peak table. | |
31 #' | |
32 #' @export | |
33 | |
34 export.class.table <- function(gibbsL=NULL, reactionM, molIon=NULL, probM=NULL, html=FALSE, filename="test", burnIn=3000, linkPattern="kegg", m.test="none", class1=NULL, class2=NULL, norm=FALSE, DB, prob="count", colorplot=FALSE, addLink=NULL) { | |
35 | |
36 plotEIC <- function (xcmsObject, figidx, pngidx, colorplot, mode=NULL) { | |
37 dir.create(paste(filename,"_fig",sep="")) | |
38 gt<-groups(xcmsObject) | |
39 if(colorplot==TRUE){ | |
40 gt2 <- gt[figidx,] | |
41 rgt <- gt2[,c("rtmin","rtmax")] | |
42 rgt[,1] <- rgt[,1]-100 | |
43 rgt[,2] <- rgt[,2]+100 | |
44 #require(doMC) | |
45 #registerDoMC() | |
46 #system.time( | |
47 #foreach(i=1:nrow(gt2)) %dopar% { | |
48 for(i in 1:nrow(gt2)){ | |
49 groupidx1 <- which(gt[,"rtmed"] > rgt[i,1] & gt[,"rtmed"] < rgt[i,2] & gt[,"mzmed"]> gt2[i,"mzmed"]-0.1 & gt[,"mzmed"]< gt2[i,"mzmed"]+0.1) | |
50 eiccor <- getEIC(xcmsObject, groupidx = groupidx1) | |
51 png(paste(filename, "_fig/", sprintf("%003d", i), ".png", sep="")) | |
52 plot(eiccor, xcmsObject, groupidx = 1) | |
53 dev.off() | |
54 } | |
55 } else { | |
56 gt <- gt[figidx,] | |
57 rgt <- gt[,c("rtmin","rtmax")] | |
58 rgt[,1] <- rgt[,1]-100 | |
59 rgt[,2] <- rgt[,2]+100 | |
60 | |
61 eics <- getEIC(xcmsObject, mzrange=gt, rtrange =rgt, groupidx = 1:nrow(gt)) | |
62 png(file.path(paste(filename, "_fig/%003d.png", sep="")), height=768, width=1024) | |
63 #png(file.path(paste(filename, "_fig/", pngidx, sep="")), h=768, w=1024) | |
64 plot(eics, xcmsObject) | |
65 dev.off() | |
66 } | |
67 if(!is.null(mode)) { | |
68 pngs <- dir(paste(filename, "_fig/", sep="")) | |
69 if(length(grep("pos|neg" , pngs))) pngs <- pngs[-grep("pos|neg" , pngs)] | |
70 opng <- as.numeric(sub(".png","", pngs)) | |
71 pngs <- pngs[order(opng)] | |
72 name1 <- paste(filename, "_fig/",pngs, sep="") | |
73 name2 <- paste(filename, "_fig/",pngidx, mode, ".png", sep="") | |
74 for(i in 1:length(name1)) file.rename(name1[i], name2[i]) | |
75 } | |
76 | |
77 } | |
78 allion <- molIon$molIon[molIon$molIon[,"isotope"]==0,] | |
79 ReactMatrix <- reactionM[reactionM[,5]!="unknown",] | |
80 x <- apply(unique(ReactMatrix[,c(2, 3)]), 2, as.numeric) # Have to look for all pairs | |
81 y <- as.numeric(ReactMatrix[,4]) | |
82 prob_mean_ma <- matrix(0, nrow = length(y), ncol = nrow(x)) | |
83 # z_average <- matrix(0, nrow = length(y), ncol = length(x)) | |
84 | |
85 if (!is.null(gibbsL)){ | |
86 prob_table <- gibbsL$prob_table[,-c(1:burnIn)] | |
87 class_table <- gibbsL$class_table[,-c(1:burnIn)] | |
88 #indList <- tapply(1:nrow(ReactMatrix), as.numeric(ReactMatrix[,1]), function(x) x) | |
89 coords <- tapply(1:nrow(ReactMatrix), ReactMatrix[,"molIonID"], function(x) x) | |
90 coords2 <- unlist(lapply(coords, function(x) rep(x[1], length(x)))) | |
91 indList <- coords[order(unique(coords2))] | |
92 fillMatrix <- function(j,i) { | |
93 idp <- which(class_table[i,] == j) | |
94 if(prob=="count") prob_mean_ma[j,i] <<- length(idp)/ncol(class_table) | |
95 if(prob=="mean") prob_mean_ma[j,i] <<- mean(prob_table[i,idp]) | |
96 } | |
97 | |
98 | |
99 for ( i in 1:nrow(x) ) { | |
100 | |
101 sapply(indList[[i]], fillMatrix, i) | |
102 } | |
103 if(sum(prob_mean_ma=="NaN")) prob_mean_ma[prob_mean_ma=="NaN"] <- 0 | |
104 # for ( i in 1:nrow(x) ) { | |
105 # for ( j in 1:length(y) ) { | |
106 # idp <- which(class_table[i,] == j) | |
107 # prob_mean_ma[j,i] <- mean(prob_table[i,idp]) | |
108 # # this is an alternative way to calculate the probabilities, should try latter, and compare results | |
109 # #prob_mean_ma[j,i] <- length(idp)/ncol(class_table) | |
110 # if ( prob_mean_ma[j,i] == "NaN" ) prob_mean_ma[j,i] <- 0 | |
111 # } | |
112 # # do I still need this matrix? | |
113 # k=which(prob_mean_ma[,i]==max(prob_mean_ma[,i])) | |
114 # z_average[k[1],i]=1 | |
115 # } | |
116 } | |
117 else { | |
118 prob_mean_ma <- probM | |
119 } | |
120 # think about natural probabilities | |
121 # prob_mean_ma[prob_mean_ma[,1]!=0,1]/sum(prob_mean_ma[prob_mean_ma[,1]!=0,1]) | |
122 prob_mean_ma <- apply(prob_mean_ma, 2, function(x){ x[x!=0] <- x[x!=0]/sum(x[x!=0]); return(x)} ) | |
123 | |
124 # create a dir to figures | |
125 lpattern <- function(type){ | |
126 switch(type, | |
127 kegg = "http://www.genome.jp/dbget-bin/www_bget?", | |
128 chebi = "http://www.ebi.ac.uk/chebi/searchId.do;EFB7DFF9E88306BBCD6AB78B32664A85?chebiId=", | |
129 pubchem = "http://www.ncbi.nlm.nih.gov/pccompound/?term=" | |
130 ) | |
131 } | |
132 linkURL <- lpattern(linkPattern) | |
133 fig <- paste("file://", getwd(), paste("/",filename,"_fig/",sep=""), sep="") | |
134 if(!is.null(molIon$cameraobj)) { | |
135 figidx <- c("") | |
136 coords <- gsub("(^\\d)","X\\1",rownames(molIon$cameraobj@xcmsSet@phenoData)) | |
137 # experimental! Which set of characters???? | |
138 coords <- gsub("-|\\,|~","\\.",coords) | |
139 coords <- gsub("\\s+","\\.",coords) | |
140 peaklist <- getPeaklist(molIon$cameraobj) | |
141 rpeaklist <- peaklist[,c("mz","rt","isotopes","adduct","pcgroup")] | |
142 } | |
143 else { | |
144 figidx <- c("","") | |
145 coordsP <- gsub("(^\\d)","X\\1",rownames(molIon$pos@xcmsSet@phenoData)) | |
146 # experimental! Which set of characters???? | |
147 coordsP <- gsub("-|\\,|~","\\.",coordsP) | |
148 coordsP <- gsub("\\s+","\\.",coordsP) | |
149 coordsN <- gsub("(^\\d)","X\\1",rownames(molIon$neg@xcmsSet@phenoData)) | |
150 # experimental! Which set of characters???? | |
151 coordsN <- gsub("-|\\,|~","\\.",coordsN) | |
152 coordsN <- gsub("\\s+","\\.",coordsN) | |
153 coords <- coordsP | |
154 if(length(coordsP)!=length(coordsN)) cat("\n Warning: The number of samples are different\n") | |
155 | |
156 peaklistP <- getPeaklist(molIon$pos) | |
157 rpeaklistP <- peaklistP[,c("mz","rt","isotopes","adduct","pcgroup")] | |
158 peaklistN <- getPeaklist(molIon$neg) | |
159 rpeaklistN <- peaklistN[,c("mz","rt","isotopes","adduct","pcgroup")] | |
160 } | |
161 | |
162 # if(sum(is.na(peaklist))) { | |
163 # cat("\nWarning: NAs Found in peaklist\n\nSubstituting for \"ones\"\n") | |
164 # na.ids <- which(is.na(peaklist),arr.ind=TRUE) | |
165 # for(l in 1:nrow(na.ids)){ | |
166 # peaklist[na.ids[l,][1], na.ids[l,][2]] <- 1 | |
167 # } | |
168 # } | |
169 # | |
170 | |
171 ans <- matrix("", nrow=1, ncol=7+length(coords)) | |
172 unq <- unique(ReactMatrix[,2:3]) | |
173 for (i in 1:nrow(unq)) { | |
174 coord <- which(ReactMatrix[,2]==unq[i,1] & ReactMatrix[,3]==unq[i,2]) | |
175 coord2 <- which(allion[,2]==unq[i,1] & allion[,1]==unq[i,2]) | |
176 # idx2 <- unique(which(allion[,1] %in% reactionM[reactionM[,5]=="unknown",2])) | |
177 # work with the higher intensities for a given ion annotation, not necessarily the right one | |
178 | |
179 if(!is.null(molIon$cameraobj)) { | |
180 idx <- as.vector(unlist(sapply(allion[coord2,"trace"], | |
181 function(x) { | |
182 x <- as.matrix(x) | |
183 raw <- strsplit(x,";")[[1]] | |
184 mraw <- apply(peaklist[raw, coords], 1, mean) | |
185 raw[which.max(mraw)] | |
186 } | |
187 | |
188 ) | |
189 ) | |
190 ) | |
191 | |
192 idx <- unique(idx) | |
193 figidx <- append(figidx,idx) | |
194 } | |
195 else { | |
196 idx <- c() | |
197 | |
198 for(l in 1:nrow( allion[coord2,c("trace","comb")])) { | |
199 x <- as.matrix(allion[coord2,c("trace","comb")][l,]) | |
200 raw <- strsplit(x[1],";")[[1]] | |
201 if(x[2]!="neg"){ | |
202 mraw <- apply(peaklistP[raw, coordsP], 1, mean, na.rm=TRUE) | |
203 } | |
204 else { | |
205 | |
206 mraw <- apply(peaklistN[raw, coordsN], 1, mean, na.rm=TRUE) | |
207 } | |
208 idx <- c(idx, raw[which.max(mraw)]) | |
209 } | |
210 | |
211 | |
212 idx <- unique(idx) | |
213 figidx <- rbind(figidx,c(idx,allion[coord2,"comb"][1])) | |
214 } | |
215 #figidx <- append(figidx,strsplit(allion[coord2,5], ";")[[1]][1]) | |
216 ans1 <- matrix("", nrow=length(coord), ncol=7+length(coords)) | |
217 ans1[,2]<-as.matrix(ReactMatrix[coord,5]) | |
218 prob <- as.matrix(prob_mean_ma[coord, i]) # need to change and compare a pair of mass/rt | |
219 # number figs | |
220 if ( i >= 100 ) { ans1[1,6]=i } | |
221 else { if ( i >= 10 ) { ans1[1,6]=paste(0,i, sep="") } else { ans1[1,6]=paste("00",i, sep="") } } | |
222 | |
223 if (sum(prob)>0) { | |
224 #prob <- prob/sum(prob) | |
225 o <- order(prob, decreasing=TRUE) | |
226 ans1[,-6] <- ans1[o,-6] | |
227 ans1 <- matrix(ans1, nrow=length(o)) | |
228 ans1[1,1] <- ReactMatrix[coord[1],3] | |
229 #ans1[,3] <- round(prob/min(prob[prob!=0]), 3)[o] | |
230 ans1[,3] <- round(prob, 3)[o] | |
231 if (length(prob[prob!=0])>1) { | |
232 entropy <- -sum(prob[prob!=0]*log(prob[prob!=0], length(prob[prob!=0]))) | |
233 } | |
234 else { entropy <- 0 | |
235 } | |
236 ans1[1,4] <- round(entropy, 3) | |
237 } | |
238 else { | |
239 ans1[1,1] <- ReactMatrix[coord[1],3] | |
240 ans1[1,3] <- "undef" | |
241 } | |
242 | |
243 if(!is.null(molIon$cameraobj)) { | |
244 ans1[1,7] <- apply(rpeaklist[idx,], 1, function(x) paste(x[c(1,2,3,4)], collapse="#")) | |
245 ans1[1,8:ncol(ans1)] <- as.matrix(peaklist[idx, coords]) | |
246 } | |
247 else { | |
248 if(allion[coord2,"comb"]=="pos"|allion[coord2,"comb"]=="both") { | |
249 ans1[1,7] <- apply(rpeaklistP[idx,], 1, function(x) paste(x[c(1,2,3,4)], collapse="#")) | |
250 ans1[1,8:ncol(ans1)] <- as.matrix(peaklistP[idx, coordsP]) | |
251 } | |
252 else { | |
253 ans1[1,7] <- apply(rpeaklistN[idx,], 1, function(x) paste(x[c(1,2,3,4)], collapse="#")) | |
254 ans1[1,8:ncol(ans1)] <- as.matrix(peaklistN[idx, coordsN]) | |
255 } | |
256 } | |
257 ans <- rbind(ans, as.matrix(ans1)) | |
258 } | |
259 ans <- ans[-1,] | |
260 # this option should change according with the bank | |
261 if(html) { | |
262 nid <- unlist(sapply(ans[,2], function(x) which(DB$id==x))) | |
263 #ans[,2] <- as.character(DB$name[nid]) | |
264 } | |
265 unk <- reactionM[reactionM[,5]=="unknown",] | |
266 ans1 <- matrix("", nrow=nrow(unk), ncol=7+length(coords)) | |
267 ans1[,1] <- unk[,3] | |
268 ans1[,2] <- unk[,5] | |
269 for(j in 1:nrow(ans1)) { | |
270 i <- j + max(as.numeric(ans[,6]),na.rm=TRUE) | |
271 if ( i >= 100 ) { ans1[j,6]=i } | |
272 else { if ( i >= 10 ) { ans1[j,6]=paste(0,i, sep="") } else { ans1[j,6]=paste("00",i, sep="") } } | |
273 } | |
274 # this step try to recover ids of ion annotation for masses without database annotation | |
275 idx2 <- c(); #for(m in 1:nrow(allion)) if(sum(allion[m,2]==as.numeric(unk[,2])) & sum(allion[m,1]==as.numeric(unk[,3]))) idx2 <- append(idx2, m) | |
276 # temp changes made 03/03/2014 have to check carefuly | |
277 lidx <- lapply(1:nrow(allion), function(m) which(allion[m,2]==unk[,2] & allion[m,1]==unk[,3])) | |
278 idx2 <- which(lapply(lidx, length)>0) | |
279 | |
280 if(!is.null(molIon$cameraobj)) { | |
281 idx <- as.vector(unlist(sapply(allion[idx2,"trace"], | |
282 function(x) { | |
283 x <- as.matrix(x) | |
284 raw <- strsplit(x,";")[[1]] | |
285 mraw <- apply(peaklist[raw, coords], 1, mean) | |
286 raw[which.max(mraw)] | |
287 } | |
288 | |
289 ) | |
290 ) | |
291 ) | |
292 } | |
293 | |
294 else { | |
295 # don't know what happened here with apply | |
296 idx <- c() | |
297 | |
298 for(i in 1:nrow( allion[idx2,c("trace","comb")])) { | |
299 x <- as.matrix(allion[idx2,c("trace","comb")][i,]) | |
300 raw <- strsplit(x[1],";")[[1]] | |
301 if(x[2]!="neg"){ | |
302 mraw <- apply(peaklistP[raw, coordsP], 1, mean, na.rm=TRUE) | |
303 } | |
304 else { | |
305 | |
306 mraw <- apply(peaklistN[raw, coordsN], 1, mean, na.rm=TRUE) | |
307 } | |
308 idx <- c(idx, raw[which.max(mraw)]) | |
309 } | |
310 | |
311 | |
312 | |
313 tmpidx <- cbind(idx,allion[idx2,"comb"]) | |
314 } | |
315 if(!is.null(molIon$cameraobj)) { | |
316 ans1[,7] <- apply(rpeaklist[idx,], 1, function(x) paste(x[c(1,2,3,4)], collapse="#")) | |
317 ans1[,8:ncol(ans1)] <- as.matrix(peaklist[idx, coords]) | |
318 } | |
319 else { | |
320 idxP <- tmpidx[tmpidx[,2]!="neg",1] | |
321 ans1[1:length(idxP),7] <- apply(rpeaklistP[idxP,], 1, function(x) paste(x[c(1,2,3,4)], collapse="#")) | |
322 ans1[1:length(idxP),8:ncol(ans1)] <- as.matrix(peaklistP[idxP, coordsP]) | |
323 idxN <- tmpidx[tmpidx[,2]=="neg",1] | |
324 ans1[(length(idxP)+1):nrow(ans1),7] <- apply(rpeaklistN[idxN,], 1, function(x) paste(x[c(1,2,3,4)], collapse="#")) | |
325 ans1[(length(idxP)+1):nrow(ans1),8:ncol(ans1)] <- as.matrix(peaklistN[idxN, coordsN]) | |
326 } | |
327 ans <- rbind(ans, as.matrix(ans1)) | |
328 | |
329 if(!is.null(molIon$cameraobj)) { | |
330 figidx <- c(figidx,idx) | |
331 figidx <- as.numeric(figidx[-1]) | |
332 } | |
333 else { | |
334 figidx <- rbind(figidx,tmpidx) | |
335 allidx <- figidx[-1,] | |
336 allidx <- cbind(allidx, ans[ans[,6]!="",6]) | |
337 figidx <- as.numeric(figidx[-1,1]) | |
338 } | |
339 | |
340 | |
341 if(m.test=="none") { | |
342 testname <- "none" | |
343 #testname <- "Formula" | |
344 #ans[ans[,2]!="unknown",][,5] <- as.character(DB$formula[nid]) | |
345 } | |
346 if(m.test=="t.test") { | |
347 normalize.medFC <- function(mat) { | |
348 # Perform median fold change normalisation | |
349 # X - data set [Variables & Samples] | |
350 medSam <- apply(mat, 1, median) | |
351 medSam[which(medSam==0)] <- 0.0001 | |
352 mat <- apply(mat, 2, function(mat, medSam){ | |
353 medFDiSmpl <- mat/medSam | |
354 vec<-mat/median(medFDiSmpl) | |
355 return(vec) | |
356 }, medSam) | |
357 return (mat) | |
358 } | |
359 # this piece of code was copied from xcms | |
360 pval <- function(X, classlabel, teststat) { | |
361 | |
362 n1 <- rowSums(!is.na(X[,classlabel == 0])) | |
363 n2 <- rowSums(!is.na(X[,classlabel == 1])) | |
364 A <- apply(X[,classlabel == 0], 1, sd, na.rm=TRUE)^2/n1 ## sd(t(X[,classlabel == 0]), na.rm = TRUE)^2/n1 | |
365 B <- apply(X[,classlabel == 1], 1, sd, na.rm=TRUE)^2/n2 ## sd(t(X[,classlabel == 1]), na.rm = TRUE)^2/n2 | |
366 df <- (A+B)^2/(A^2/(n1-1)+B^2/(n2-1)) | |
367 | |
368 pvalue <- 2 * (1 - pt(abs(teststat), df)) | |
369 invisible(pvalue) | |
370 } | |
371 | |
372 c1 <- grep(class1, molIon$cameraobj@xcmsSet@phenoData[,1]) | |
373 c2 <- grep(class2, molIon$cameraobj@xcmsSet@phenoData[,1]) | |
374 testclab <- c(rep(0, length(c1)), rep(1, length(c2))) | |
375 testval <- groupval(molIon$cameraobj@xcmsSet, "medret", "into") | |
376 if(norm) testval <- normalize.medFC(testval) | |
377 tstat <- mt.teststat(testval, testclab) | |
378 pvalue <- pval(testval, testclab, tstat) | |
379 | |
380 # | |
381 # rport <- diffreport(molIon$cameraobj@xcmsSet, class1=class1, class2= class2, sortpval=FALSE) | |
382 # ans[ans[,6]!="",5] <- rport[figidx, "pvalue"] | |
383 ans[ans[,6]!="",5] <- pvalue[figidx] | |
384 testname <- "t.test p-value" | |
385 } | |
386 if(m.test=="anova"){ | |
387 class <- molIon$cameraobj@xcmsSet@phenoData | |
388 getPvalue <- function(dataidx) { | |
389 aov.data <- data.frame(resp=as.numeric(peaklist[dataidx,coords]), class=class) | |
390 anova(aov(resp~class, aov.data))$Pr[1] | |
391 } | |
392 testname <- "anova p-value" | |
393 ans[ans[,6]!="",5] <- sapply(figidx, getPvalue) | |
394 } | |
395 | |
396 header <- matrix(c("Proposed Mass","Most probable Compound","Probability","Entropy", testname,"EIC-plot", "Ion annotation",coords), nrow=1 , ncol=7+length(coords) ) | |
397 ans <- rbind(header, ans) | |
398 | |
399 | |
400 # additional field | |
401 # ans <- cbind(ans[,1:2], ans[,2], ans[,3:ncol(ans)]) | |
402 #ans[ans[,3]!="unknown",][-1,3] <- as.character(DB$sbml.id[nid]) | |
403 | |
404 if(html) { | |
405 #require(hwriter) | |
406 ansb <- ans | |
407 ans[ans[,2]!="unknown",][-1,2] <- as.character(DB$name[nid]) | |
408 if(linkPattern=="pubchem") ansb <- ans | |
409 | |
410 hyper=matrix(paste(linkURL, ansb[-1,2], sep=""),ncol=1 ) | |
411 if(!is.null(molIon$cameraobj)) { | |
412 hyper1=matrix(paste(fig, ans[-1,6],".png", sep=""),ncol=1 ) | |
413 } | |
414 else { | |
415 hyper1 <- ans[-1,6] | |
416 hyper1[ans[-1,6]!=""][allidx[,2]!="neg"] <- paste(hyper1[ans[-1,6]!=""][allidx[,2]!="neg"], "pos", sep="") | |
417 hyper1[ans[-1,6]!=""][allidx[,2]=="neg"] <- paste(hyper1[ans[-1,6]!=""][allidx[,2]=="neg"], "neg", sep="") | |
418 hyper1=matrix(paste(fig, hyper1,".png", sep=""),ncol=1 ) | |
419 } | |
420 p=openPage(paste(filename,".html",sep="")) | |
421 ans2 <- ans[,1:7] | |
422 link <- cbind(matrix(NA,nrow(ans2),1),rbind(NA,hyper),matrix(NA,nrow(ans2),3),rbind(NA,hyper1),matrix(NA,nrow(ans2),1)) | |
423 # This block is responsible to add as many columns as the user | |
424 # wants | |
425 if(!is.null(addLink)){ | |
426 for(l in 1:length(addLink$link)) { | |
427 link <- cbind(link, rbind(NA, addLink[[l]])) | |
428 } | |
429 for(a in 1:length(addLink$ans)) { | |
430 ans2 <- cbind(ans2,addLink$ans[[a]]) | |
431 #colnames(ans2)[7+a] <- addLink$ans[[a]][1] | |
432 } | |
433 } | |
434 hwrite(ans2, p,row.bgcolor='#ffdc98', link=link ) | |
435 closePage(p) | |
436 if(!is.null(molIon$cameraobj)) { | |
437 plotEIC(molIon$cameraobj@xcmsSet, figidx, ans[ans[,6]!="",6][-1], colorplot=colorplot) | |
438 } | |
439 else { | |
440 dataidxP <- as.numeric(allidx[allidx[,2]!="neg",1]) | |
441 pngidxP <- allidx[allidx[,2]!="neg",3] | |
442 plotEIC(molIon$pos@xcmsSet, dataidxP, pngidxP, "pos", colorplot=colorplot) | |
443 dataidxN <- as.numeric(allidx[allidx[,2]=="neg",1]) | |
444 pngidxN <- allidx[allidx[,2]=="neg",3] | |
445 plotEIC(molIon$neg@xcmsSet, dataidxN, pngidxN, "neg", colorplot=colorplot) | |
446 } | |
447 | |
448 } | |
449 else { | |
450 ansb <- ans | |
451 } | |
452 colnames(ansb) <- ansb[1,] | |
453 ansb <- ansb[-1,] | |
454 return(list(classTable=ansb, figidx=figidx)) | |
455 } |