view lib.r @ 2:3a9914b37f2f draft

planemo upload commit 65b9a48e21dd8fbe7b55e20f33c55ea84b72f9f5-dirty
author lecorguille
date Mon, 04 Jul 2016 11:58:10 -0400
parents e13ec2c3fabe
children abcfa1648b66
line wrap: on
line source

# lib.r ProbMetab version="1.0.0"
# Author: Misharl Monsoor ABIMS TEAM mmonsoor@sb-roscoff.fr
# Contributors: Yann Guitton and Jean-francois Martin


##Main probmetab function launch by the Galaxy ProbMetab wrapper
probmetab = function(xa, xaP, xaN, variableMetadata, variableMetadataP, variableMetadataN, listArguments){
	##ONE MODE ACQUISITION##
	if(listArguments[["mode_acquisition"]]=="one") {
		comb=NULL

		#Get the polarity from xa object
		polarity=xa@polarity
		#SNR option
		if ("xsetnofill" %in% names(listArguments)) {
			load(listArguments[["xsetnofill"]])
			xsetnofill=xset
		}
		else{
			xsetnofill=NULL
		}
		#Exclude samples
		if ("toexclude" %in% names(listArguments)) {
			toexclude=listArguments[["toexclude"]]
		}
		else {
			toexclude=NULL
		}
		ionAnnot=get.annot(xa, polarity=polarity, allowMiss=listArguments[["allowMiss"]],xset=xsetnofill,toexclude=toexclude)
		comb=NULL
	}

	##TWO MODES ACQUISITION##
	#Mode annotatediffreport
	else if(listArguments[["inputs_mode"]]=="two"){
		##Prepare the objects that will be used for the get.annot function
		comb=1
		

		xsetPnofill=NULL
		xsetNnofill=NULL
		# TODO: a reactiver		
		#if ("xsetPnofill" %in% names(listArguments)) {
		#	load(listArguments[["xsetPnofill"]])
		#	xsetPnofill=xset
		#}
		#if ("xsetNnofill" %in% names(listArguments)) {
		#	load(listArguments[["xsetNnofill"]])
		#	xsetNnofill=xset
		#}
		# include CAMERA non-annotated compounds, and snr retrieval 
		# comb 2+ - used on Table 1	
		ionAnnotP2plus = get.annot(axP, allowMiss=listArguments[["allowMiss"]], xset=xsetPnofill,toexclude=listArguments[["toexclude"]]) 
		ionAnnotN2plus = get.annot(axN, polarity="negative", allowMiss=listArguments[["allowMiss"]], xset=xsetNnofill,toexclude=listArguments[["toexclude"]])
		ionAnnot = combineMolIon(ionAnnotP2plus, ionAnnotN2plus)
		print(sum(ionAnnot$molIon[,3]==1))
		print(sum(ionAnnot$molIon[,3]==0))
		write.table(ionAnnot[1], sep="\t", quote=FALSE, row.names=FALSE, file="CombineMolIon.tsv")
		#Merge variableMetadata Negative and positive acquisitions mode
		

		#Mode combinexsannos TODO bug avec tableau issus de combinexsannos
		#else {
			#load(listArguments[["image_combinexsannos"]])
			#image_combinexsannos=cAnnot
			##Prepare the objects that will be used for the combineMolIon function
			#load(listArguments[["image_pos"]])
			#image_pos=xa
			#ionAnnot=combineMolIon(peaklist=cAnnot, cameraobj=image_pos, polarity="pos")
		#}
		
	}

	##DATABASE MATCHING##
	if (listArguments[["kegg_db"]]=="KEGG"){		
		DB=build.database.kegg(orgID = NULL)
	}
	else{	
		table_list <<- NULL
		ids=strsplit(listArguments[["kegg_db"]],",")
		ids=ids[[1]]
		if(length(ids)>1){
			for(i in 1:length(ids)){
				 table_list[[i]] <- build.database.kegg(ids[i])
			}
			db_table=do.call("rbind",table_list)
			DB=unique(db_table)
		}
		else{
			DB=build.database.kegg(listArguments[["kegg_db"]])
		}
	}	
	#Matching des mass exactes mesurees avec les masses des compounds KEGG (pas M+H ou M-H)
	reactionM = create.reactionM(DB, ionAnnot, ppm.tol=listArguments[["ppm_tol"]])
	##PROBABILITY RANKING##
	# number of masses with candidates inside the fixed mass window
	# and masses with more than one candidate
	length(unique(reactionM[reactionM[,"id"]!="unknown",1])) 
	sum(table(reactionM[reactionM[,"id"]!="unknown",1])>1)
	#if (listArguments[["useIso"]]){
		#BUG TODO
		# Calculate the ratio between observed and theoretical isotopic patterns.
		# If you don't have an assessment of carbon offset to carbon number prediction 
		# skip this step and use the reactionM as input to weigthM function. 
		#isoPatt < incorporate.isotopes(comb2plus, reactionM, , samp=12:23, DB=DB)  
		#  calculate   the   likelihood   of   each   mass   to   compound   assignment   using   mass   accuracy,and isotopic pattern, when present
		#wl < weightM(isoPatt,intervals=seq(0,1000,by=500), offset=c(3.115712, 3.434146, 2.350798))
		
			#isoPatt=incorporate.isotopes(ionAnnot, reactionM,comb=comb,var=listArguments[["var"]],DB=DB)

		#wl = weightM(reactionM, useIso=true)
	#}
	#else {
		#wl = weightM(reactionM, useIso=FALSE)
	#}
	wl =weightM(reactionM, useIso=FALSE)	
	w = design.connection(reactionM)
	# Probability calculations
	x = 1:ncol(wl$wm)
	y = 1:nrow(wl$wm)
	conn = gibbs.samp(x, y, 5000, w, wl$wm)
	ansConn = export.class.table(conn, reactionM, ionAnnot, DB=DB,html=listArguments[["html"]],filename="AnalysisExample",prob=listArguments[["prob"]])
	if(listArguments[["html"]]){
		#Zip the EICS plot
		system(paste('zip -r "Analysis_Report.zip" "AnalysisExample_fig"'))
	}
	
	# calculate the correlations and partial correlations and cross reference then with reactions
	mw=which(w==1,arr.ind=TRUE)
	#reac2cor function : Use the intensity of putative molecules in repeated samples to calculate correlations and partial
	#correlation in a user defined threshold of false discovery rate for significance testing. After the
	#correlation test the function also overlay significant correlations with all putative reactions between
	#two masses.
	#It generates a list of estimated correlations and reactions.
	corList=reac2cor(mw,ansConn$classTable,listArguments[["opt"]],listArguments[["corths"]],listArguments[["corprob"]],listArguments[["pcorprob"]])
	ans=list("ansConn"=ansConn,"corList"=corList)
	#Generate the siff table for CytoScape
	cytoscape_output(corList,ansConn)


	#Execute the merge_probmetab function to merge the variableMetadata table and annotations from ProbMetab results
	
	if(listArguments[["mode_acquisition"]]=="one") {
		#Retrocompatibility with previous annotateDiffreport variableMetadata dataframe (must replace mzmed column by mz, and rtmed by rt)
		names(variableMetadata)[names(variableMetadata)=="mzmed"] <- "mz"
		names(variableMetadata)[names(variableMetadata)=="rtmed"] <- "rt"
		variableM=merge_probmetab(variableMetadata, ansConn)
		write.table(variableM, sep="\t", quote=FALSE, row.names=FALSE, file="variableMetadata.tsv")
	} else if (listArguments[["mode_acquisition"]]=="two") {
		#Retrocompatibility with previous annotateDiffreport variableMetadata dataframe (must replace mzmed column by mz, and rtmed by rt)
		names(variableMetadataP)[names(variableMetadata)=="mzmed"] <- "mz"
		names(variableMetadataP)[names(variableMetadata)=="rtmed"] <- "rt"
		names(variableMetadataN)[names(variableMetadata)=="mzmed"] <- "mz"
		names(variableMetadataN)[names(variableMetadata)=="rtmed"] <- "rt"
		variableMP=merge_probmetab(variableMetadataP, ansConn)
		write.table(variableMP, sep="\t", quote=FALSE, row.names=FALSE, file="variableMetadata_Positive.tsv")
		variableMN=merge_probmetab(variableMetadataN, ansConn)
		write.table(variableMN, sep="\t", quote=FALSE, row.names=FALSE, file="variableMetadata_Negative.tsv")
	}

	return(ans)

}

##Function that generates a siff table for CytoScape
cytoscape_output=function(corList,ansConn){
	signif_cor=as.data.frame(corList$signif.cor)
	classTable=as.data.frame(ansConn$classTable)
	#Siff table
	siff_table=cbind(signif_cor["node1"],signif_cor["cor"],signif_cor["node2"])
	#attribute table output for Cytoscape

	## START  Code part from the export2cytoscape function of ProbMetab written by Ricardo R. Silva 
	for (i in 1:nrow(classTable)) if (classTable[i, 1] == ""){
		classTable[i, c(1, 4, 6, 7)] <- classTable[i - 1, c(1, 4, 6, 7)]
	}
 	msel <- as.matrix(classTable[, 1:7])
 	msel <- cbind(msel[, 6], msel[,-6])
 	colnames(msel)[1] <- "Id"
 	msel[, 1] <- sub("^\\s+", "", msel[, 1])
 	colnames(msel)[1] <- "Id"
	ids <- unique(msel[, 1])
 	attrMatrix <- matrix("", nrow = length(ids), ncol = ncol(msel)-1)
	for (i in 1:length(ids)) {
		    attrMatrix[i, 1] <- unique(msel[msel[, 1] == ids[i], 
		        2])
		    attrMatrix[i, 2] <- paste("[", paste(msel[msel[, 
		        1] == ids[i], 3], collapse = ", "), "]", sep = "")
		    attrMatrix[i, 3] <- paste("[", paste(msel[msel[, 
		        1] == ids[i], 4], collapse = ", "), "]", sep = "")
		    attrMatrix[i, 4] <- unique(msel[msel[, 1] == ids[i], 
		        5])
		    attrMatrix[i, 5] <- paste("[", paste(msel[msel[, 
		        1] == ids[i], 6], collapse = ", "), "]", sep = "")
		    attrMatrix[i, 6] <- unique(msel[msel[, 1] == ids[i], 
		        7])
        }
	ids <- as.numeric(unique(msel[, 1]))
	attrMatrix <- cbind(ids, attrMatrix)
	colnames(attrMatrix) <- colnames(msel)
	## END Code part from the export2cytoscape function of ProbMetab writieen by Ricardo R. Silva 
	write.table(attrMatrix, sep="\t", quote=FALSE, row.names=FALSE, file="Analysis_Report.tsv")
	write.table(siff_table, sep="\t", quote=FALSE, row.names=FALSE, file="sif.tsv")

	return(attrMatrix)
}

##Functions written by Jean-Francois Martin

deter_ioni <- function (aninfo, pm)
{
  # determine ionisation in ProbMetab result file, used in function merge_probmetab
  # input : for 1 ion, aninfo = string with m/z rt and CAMERA annotation from ProbMetab result file
  # if the difference between m/z and the probmetab proposed mass is ~1 we use the sign (positive or negative) of this diference 
  # to define the type of ionisation
  # If adduct or fragment was detected, therefore diff >>1 and so, we search for substring "+" ou "2+" ou "3+" ou "-"... 
  # to define the type of ionisation
  # aninfo : vecteur of character resulting of the parsing(sep="#") of the probmetab annotation
  if (round(abs(as.numeric(aninfo[1]) - pm),0) ==1) {
    if (as.numeric(aninfo[1]) - pm <0) {esi <- "n"} else {esi <- "p"}
  } else 
    if (!is.na(aninfo[4])) {
      anstr <- aninfo[4]
      # cat(anstr)
      if ((grepl("]+",anstr,fixed=T)==T) || (grepl("]2+",anstr,fixed=T)==T) || (grepl("]3+",anstr,fixed=T)==T)) { esi <- "p"}
      else 
        if ((grepl("]-",anstr,fixed=T)==T) || (grepl("]2-",anstr,fixed=T)==T) || (grepl("]3-",anstr,fixed=T)==T)) { esi <- "n"}
      # cat(" ioni ",esi,"\n")
    } else
    { esi <- "u"} 
  
  return(esi)
}


merge_probmetab <- function(metaVar,ansConn) {
  ## Parse ProbMetab information result file and merge in variable_metaData initial file
  ##  inputs : 
  ##      metaVar : data.frame of metadataVariable input of probmetab function
  ##     ansConn  : data.frame of ProbMetab result
  ## output : dataframe with Probmetab results merge with variableMetadata
  ## Constante
  ## iannot : indice de la colonne annotation dans le resultat de probMetab
  iannot <- 4
  
  ## definition of an unique identification of ions mz with 3 decimals and rt(sec) with 1 decimal to avoid 
  ## duplicate ions name in the diffreport result file
  ions <- paste ("M",round(metaVar$mz,3),"T",round(metaVar$rt,1),sep="")
  metaVar <- data.frame(ions,metaVar)
  
  ###### Result data.frame from ProbMetab result list
  an_ini <- ansConn$classTable
  
  ## Suppression of rows without  mz and rt or unknown and columns of intensities
  ## COLUMNS SUBSCRIPTS HAVE TO BE CHECKED WITh DIFFERENT RESULTS FILES 
  an <- an_ini[(an_ini[,2]!="unknown"),c(1,2,3,7)]
  ## initialisation of vectors receiving the result of the parse of the column annotation (subscrip iannot) 
  mz <- rep(0,dim(an)[1])
  rt <- rep(0,dim(an)[1])
  propmz <- rep(0,dim(an)[1])
  ioni <- rep("u",dim(an)[1])
  
  ## parse the column annotation and define ionisation mode
  for (i in 1:dim(an)[1]) {
    if (an[i,1] != "") {
      info_mzrt <- unlist(strsplit(an[i,iannot],"#"))
      propmz[i] <- as.numeric(an[i,1])
      mz[i] <- as.numeric(info_mzrt[1])
      rt[i] <- as.numeric(info_mzrt[2])
      ioni[i] <- deter_ioni(info_mzrt,as.numeric(an[i,1]))
    }
    else {
      propmz[i] <- as.numeric(propmz[i-1])
      mz[i] <- as.numeric(mz[i-1])
      rt[i] <- as.numeric(rt[i-1])
      ioni[i] <- ioni[i-1]
    }
  }
  
  ## definition of an unique identification of ions : mz with 3 decimals and rt(sec) with 1 decimal
  ## The same as for the metadataVariable data.frame to match with.
  ions <- paste ("M",round(mz,3),"T",round(rt,1),sep="")
  an <- data.frame(ions,ioni,propmz,mz,rt,an)
  
  ## transposition of the different probmetab annotations which are in different rows in the initial result data.frame
  ## on only 1 row separated with a ";"
  li <- as.matrix(table(an$propmz))
  li <- data.frame(dimnames(li)[1],li)
  dimnames(li)[[2]][1] <- "propmz"
  ions   <- rep("u",dim(li)[1])
  propmz <- rep(0,dim(li)[1])
  mpc    <- rep("c",dim(li)[1])
  proba  <- rep("p",dim(li)[1])
  c <- 0
  while (c < dim(li)[1]) {
    c <- c + 1
    suban     <- an[an$propmz==li[c,1],]
    ions[c]   <- as.character(suban[1,1])
    propmz[c] <- as.numeric(suban[1,3])
    mpc[c]    <- paste(suban[,7],collapse=";")
    proba[c]  <- paste(as.character(suban[,8]),collapse=";") 
  }
  
  ## Creation of the data.frame with 1 row per ions
  anc <- data.frame(ions,propmz,mpc,proba)
  anc <- anc[order(anc[,1]),]
  
  metaVarFinal <- merge(metaVar, anc, by.x=1, by.y=1, all.x=T, all.y=T)
  metaVarFinal <- metaVarFinal[,-1]
  #write.table(metaVarFinal,file="res.txt", sep="\t", row.names=F, quote=F)
  
  return (metaVarFinal)
}

# RETROCOMPATIBILITE avec ancienne version de annotate
getVariableMetadata = function(xa) {
	# --- variableMetadata ---
	peakList=getPeaklist(xa)
	peakList=cbind(groupnames(xa@xcmsSet),peakList); colnames(peakList)[1] = c("name");
	variableMetadata=peakList[,!(colnames(peakList) %in% c(sampnames(xa@xcmsSet)))]
	variableMetadata$name= paste("M",round(variableMetadata$mz),"T",round(variableMetadata$rt),sep="")
	return (variableMetadata)
}