Mercurial > repos > mmonsoor > probmetab
view export.class.table-color-graph.R @ 4:52b222a626b0 draft default tip
planemo upload commit 00684d80f032fee5bd1cb86e05a477fcdcb1c3fc
author | lecorguille |
---|---|
date | Fri, 07 Apr 2017 09:11:22 -0400 |
parents | e13ec2c3fabe |
children |
line wrap: on
line source
#' export.class.table #' #' Builds a matrix with the probability for all mass to candidate compounds #' assignments, by averaging the number of assignments obtained by the gibbs sampler algorithm #' or ordering the compound candidates with the likelihood matrix. #' #' @param gibbsL a list of attributions and probabilities from gibbs.samp function. #' @param reactionM data.frame with compound annotation information. #' @param molIon non redundant ion annotation. #' @param probM optionally to gibbsL, a matrix of likelihoods. #' @param html logical, indicating whether a html file should be generated. This parameter uses the raw data to plot EICs and may be time consuming. #' @param filename html file name, the default is "test". #' @param burnIn how many samples of the gibbs sampler should be discarded. #' @param linkPattern which pattern should be linked to compound id, for now we have #' implemented "kegg", "pubchem" and "chebi" patterns. #' @param m.test statistical test to compare mean differences. This option #' is only available to single acquisition mode analysis, with options #' "t.test" and "anova". #' @param class1 if the m.test is "t.test" first class to compare in the test, #' according with xcmsSet phenoData. #' @param class2 if the m.test is "t.test" second class to compare in the test, #' according with xcmsSet phenoData. #' @param norm logical, if TRUE performs median normalization from (Anal. Chem. 2011, 83, 5864-5872). #' @param DB data.frame table used to search compounds, with the field name to be incorporated in the html table. #' @param prob how to calculate the probability to attribute a mass to a compound. #' Default is "count", which divide the number of times each identity was #' was attributed by the number of samples. Optionally the user could #' choose to use the mean of the probabilities of the identity, "mean". #' @return A list with a matrix "classTable" with attributions and probabilities and #' indexes of selected masses from xcms peak table. #' #' @export export.class.table <- function(gibbsL=NULL, reactionM, molIon=NULL, probM=NULL, html=FALSE, filename="test", burnIn=3000, linkPattern="kegg", m.test="none", class1=NULL, class2=NULL, norm=FALSE, DB, prob="count", colorplot=FALSE, addLink=NULL) { plotEIC <- function (xcmsObject, figidx, pngidx, colorplot, mode=NULL) { dir.create(paste(filename,"_fig",sep="")) gt<-groups(xcmsObject) if(colorplot==TRUE){ gt2 <- gt[figidx,] rgt <- gt2[,c("rtmin","rtmax")] rgt[,1] <- rgt[,1]-100 rgt[,2] <- rgt[,2]+100 #require(doMC) #registerDoMC() #system.time( #foreach(i=1:nrow(gt2)) %dopar% { for(i in 1:nrow(gt2)){ groupidx1 <- which(gt[,"rtmed"] > rgt[i,1] & gt[,"rtmed"] < rgt[i,2] & gt[,"mzmed"]> gt2[i,"mzmed"]-0.1 & gt[,"mzmed"]< gt2[i,"mzmed"]+0.1) eiccor <- getEIC(xcmsObject, groupidx = groupidx1) png(paste(filename, "_fig/", sprintf("%003d", i), ".png", sep="")) plot(eiccor, xcmsObject, groupidx = 1) dev.off() } } else { gt <- gt[figidx,] rgt <- gt[,c("rtmin","rtmax")] rgt[,1] <- rgt[,1]-100 rgt[,2] <- rgt[,2]+100 eics <- getEIC(xcmsObject, mzrange=gt, rtrange =rgt, groupidx = 1:nrow(gt)) png(file.path(paste(filename, "_fig/%003d.png", sep="")), height=768, width=1024) #png(file.path(paste(filename, "_fig/", pngidx, sep="")), h=768, w=1024) plot(eics, xcmsObject) dev.off() } if(!is.null(mode)) { pngs <- dir(paste(filename, "_fig/", sep="")) if(length(grep("pos|neg" , pngs))) pngs <- pngs[-grep("pos|neg" , pngs)] opng <- as.numeric(sub(".png","", pngs)) pngs <- pngs[order(opng)] name1 <- paste(filename, "_fig/",pngs, sep="") name2 <- paste(filename, "_fig/",pngidx, mode, ".png", sep="") for(i in 1:length(name1)) file.rename(name1[i], name2[i]) } } allion <- molIon$molIon[molIon$molIon[,"isotope"]==0,] ReactMatrix <- reactionM[reactionM[,5]!="unknown",] x <- apply(unique(ReactMatrix[,c(2, 3)]), 2, as.numeric) # Have to look for all pairs y <- as.numeric(ReactMatrix[,4]) prob_mean_ma <- matrix(0, nrow = length(y), ncol = nrow(x)) # z_average <- matrix(0, nrow = length(y), ncol = length(x)) if (!is.null(gibbsL)){ prob_table <- gibbsL$prob_table[,-c(1:burnIn)] class_table <- gibbsL$class_table[,-c(1:burnIn)] #indList <- tapply(1:nrow(ReactMatrix), as.numeric(ReactMatrix[,1]), function(x) x) coords <- tapply(1:nrow(ReactMatrix), ReactMatrix[,"molIonID"], function(x) x) coords2 <- unlist(lapply(coords, function(x) rep(x[1], length(x)))) indList <- coords[order(unique(coords2))] fillMatrix <- function(j,i) { idp <- which(class_table[i,] == j) if(prob=="count") prob_mean_ma[j,i] <<- length(idp)/ncol(class_table) if(prob=="mean") prob_mean_ma[j,i] <<- mean(prob_table[i,idp]) } for ( i in 1:nrow(x) ) { sapply(indList[[i]], fillMatrix, i) } if(sum(prob_mean_ma=="NaN")) prob_mean_ma[prob_mean_ma=="NaN"] <- 0 # for ( i in 1:nrow(x) ) { # for ( j in 1:length(y) ) { # idp <- which(class_table[i,] == j) # prob_mean_ma[j,i] <- mean(prob_table[i,idp]) # # this is an alternative way to calculate the probabilities, should try latter, and compare results # #prob_mean_ma[j,i] <- length(idp)/ncol(class_table) # if ( prob_mean_ma[j,i] == "NaN" ) prob_mean_ma[j,i] <- 0 # } # # do I still need this matrix? # k=which(prob_mean_ma[,i]==max(prob_mean_ma[,i])) # z_average[k[1],i]=1 # } } else { prob_mean_ma <- probM } # think about natural probabilities # prob_mean_ma[prob_mean_ma[,1]!=0,1]/sum(prob_mean_ma[prob_mean_ma[,1]!=0,1]) prob_mean_ma <- apply(prob_mean_ma, 2, function(x){ x[x!=0] <- x[x!=0]/sum(x[x!=0]); return(x)} ) # create a dir to figures lpattern <- function(type){ switch(type, kegg = "http://www.genome.jp/dbget-bin/www_bget?", chebi = "http://www.ebi.ac.uk/chebi/searchId.do;EFB7DFF9E88306BBCD6AB78B32664A85?chebiId=", pubchem = "http://www.ncbi.nlm.nih.gov/pccompound/?term=" ) } linkURL <- lpattern(linkPattern) fig <- paste("file://", getwd(), paste("/",filename,"_fig/",sep=""), sep="") if(!is.null(molIon$cameraobj)) { figidx <- c("") coords <- gsub("(^\\d)","X\\1",rownames(molIon$cameraobj@xcmsSet@phenoData)) # experimental! Which set of characters???? coords <- gsub("-|\\,|~","\\.",coords) coords <- gsub("\\s+","\\.",coords) peaklist <- getPeaklist(molIon$cameraobj) rpeaklist <- peaklist[,c("mz","rt","isotopes","adduct","pcgroup")] } else { figidx <- c("","") coordsP <- gsub("(^\\d)","X\\1",rownames(molIon$pos@xcmsSet@phenoData)) # experimental! Which set of characters???? coordsP <- gsub("-|\\,|~","\\.",coordsP) coordsP <- gsub("\\s+","\\.",coordsP) coordsN <- gsub("(^\\d)","X\\1",rownames(molIon$neg@xcmsSet@phenoData)) # experimental! Which set of characters???? coordsN <- gsub("-|\\,|~","\\.",coordsN) coordsN <- gsub("\\s+","\\.",coordsN) coords <- coordsP if(length(coordsP)!=length(coordsN)) cat("\n Warning: The number of samples are different\n") peaklistP <- getPeaklist(molIon$pos) rpeaklistP <- peaklistP[,c("mz","rt","isotopes","adduct","pcgroup")] peaklistN <- getPeaklist(molIon$neg) rpeaklistN <- peaklistN[,c("mz","rt","isotopes","adduct","pcgroup")] } # if(sum(is.na(peaklist))) { # cat("\nWarning: NAs Found in peaklist\n\nSubstituting for \"ones\"\n") # na.ids <- which(is.na(peaklist),arr.ind=TRUE) # for(l in 1:nrow(na.ids)){ # peaklist[na.ids[l,][1], na.ids[l,][2]] <- 1 # } # } # ans <- matrix("", nrow=1, ncol=7+length(coords)) unq <- unique(ReactMatrix[,2:3]) for (i in 1:nrow(unq)) { coord <- which(ReactMatrix[,2]==unq[i,1] & ReactMatrix[,3]==unq[i,2]) coord2 <- which(allion[,2]==unq[i,1] & allion[,1]==unq[i,2]) # idx2 <- unique(which(allion[,1] %in% reactionM[reactionM[,5]=="unknown",2])) # work with the higher intensities for a given ion annotation, not necessarily the right one if(!is.null(molIon$cameraobj)) { idx <- as.vector(unlist(sapply(allion[coord2,"trace"], function(x) { x <- as.matrix(x) raw <- strsplit(x,";")[[1]] mraw <- apply(peaklist[raw, coords], 1, mean) raw[which.max(mraw)] } ) ) ) idx <- unique(idx) figidx <- append(figidx,idx) } else { idx <- c() for(l in 1:nrow( allion[coord2,c("trace","comb")])) { x <- as.matrix(allion[coord2,c("trace","comb")][l,]) raw <- strsplit(x[1],";")[[1]] if(x[2]!="neg"){ mraw <- apply(peaklistP[raw, coordsP], 1, mean, na.rm=TRUE) } else { mraw <- apply(peaklistN[raw, coordsN], 1, mean, na.rm=TRUE) } idx <- c(idx, raw[which.max(mraw)]) } idx <- unique(idx) figidx <- rbind(figidx,c(idx,allion[coord2,"comb"][1])) } #figidx <- append(figidx,strsplit(allion[coord2,5], ";")[[1]][1]) ans1 <- matrix("", nrow=length(coord), ncol=7+length(coords)) ans1[,2]<-as.matrix(ReactMatrix[coord,5]) prob <- as.matrix(prob_mean_ma[coord, i]) # need to change and compare a pair of mass/rt # number figs if ( i >= 100 ) { ans1[1,6]=i } else { if ( i >= 10 ) { ans1[1,6]=paste(0,i, sep="") } else { ans1[1,6]=paste("00",i, sep="") } } if (sum(prob)>0) { #prob <- prob/sum(prob) o <- order(prob, decreasing=TRUE) ans1[,-6] <- ans1[o,-6] ans1 <- matrix(ans1, nrow=length(o)) ans1[1,1] <- ReactMatrix[coord[1],3] #ans1[,3] <- round(prob/min(prob[prob!=0]), 3)[o] ans1[,3] <- round(prob, 3)[o] if (length(prob[prob!=0])>1) { entropy <- -sum(prob[prob!=0]*log(prob[prob!=0], length(prob[prob!=0]))) } else { entropy <- 0 } ans1[1,4] <- round(entropy, 3) } else { ans1[1,1] <- ReactMatrix[coord[1],3] ans1[1,3] <- "undef" } if(!is.null(molIon$cameraobj)) { ans1[1,7] <- apply(rpeaklist[idx,], 1, function(x) paste(x[c(1,2,3,4)], collapse="#")) ans1[1,8:ncol(ans1)] <- as.matrix(peaklist[idx, coords]) } else { if(allion[coord2,"comb"]=="pos"|allion[coord2,"comb"]=="both") { ans1[1,7] <- apply(rpeaklistP[idx,], 1, function(x) paste(x[c(1,2,3,4)], collapse="#")) ans1[1,8:ncol(ans1)] <- as.matrix(peaklistP[idx, coordsP]) } else { ans1[1,7] <- apply(rpeaklistN[idx,], 1, function(x) paste(x[c(1,2,3,4)], collapse="#")) ans1[1,8:ncol(ans1)] <- as.matrix(peaklistN[idx, coordsN]) } } ans <- rbind(ans, as.matrix(ans1)) } ans <- ans[-1,] # this option should change according with the bank if(html) { nid <- unlist(sapply(ans[,2], function(x) which(DB$id==x))) #ans[,2] <- as.character(DB$name[nid]) } unk <- reactionM[reactionM[,5]=="unknown",] ans1 <- matrix("", nrow=nrow(unk), ncol=7+length(coords)) ans1[,1] <- unk[,3] ans1[,2] <- unk[,5] for(j in 1:nrow(ans1)) { i <- j + max(as.numeric(ans[,6]),na.rm=TRUE) if ( i >= 100 ) { ans1[j,6]=i } else { if ( i >= 10 ) { ans1[j,6]=paste(0,i, sep="") } else { ans1[j,6]=paste("00",i, sep="") } } } # this step try to recover ids of ion annotation for masses without database annotation idx2 <- c(); #for(m in 1:nrow(allion)) if(sum(allion[m,2]==as.numeric(unk[,2])) & sum(allion[m,1]==as.numeric(unk[,3]))) idx2 <- append(idx2, m) # temp changes made 03/03/2014 have to check carefuly lidx <- lapply(1:nrow(allion), function(m) which(allion[m,2]==unk[,2] & allion[m,1]==unk[,3])) idx2 <- which(lapply(lidx, length)>0) if(!is.null(molIon$cameraobj)) { idx <- as.vector(unlist(sapply(allion[idx2,"trace"], function(x) { x <- as.matrix(x) raw <- strsplit(x,";")[[1]] mraw <- apply(peaklist[raw, coords], 1, mean) raw[which.max(mraw)] } ) ) ) } else { # don't know what happened here with apply idx <- c() for(i in 1:nrow( allion[idx2,c("trace","comb")])) { x <- as.matrix(allion[idx2,c("trace","comb")][i,]) raw <- strsplit(x[1],";")[[1]] if(x[2]!="neg"){ mraw <- apply(peaklistP[raw, coordsP], 1, mean, na.rm=TRUE) } else { mraw <- apply(peaklistN[raw, coordsN], 1, mean, na.rm=TRUE) } idx <- c(idx, raw[which.max(mraw)]) } tmpidx <- cbind(idx,allion[idx2,"comb"]) } if(!is.null(molIon$cameraobj)) { ans1[,7] <- apply(rpeaklist[idx,], 1, function(x) paste(x[c(1,2,3,4)], collapse="#")) ans1[,8:ncol(ans1)] <- as.matrix(peaklist[idx, coords]) } else { idxP <- tmpidx[tmpidx[,2]!="neg",1] ans1[1:length(idxP),7] <- apply(rpeaklistP[idxP,], 1, function(x) paste(x[c(1,2,3,4)], collapse="#")) ans1[1:length(idxP),8:ncol(ans1)] <- as.matrix(peaklistP[idxP, coordsP]) idxN <- tmpidx[tmpidx[,2]=="neg",1] ans1[(length(idxP)+1):nrow(ans1),7] <- apply(rpeaklistN[idxN,], 1, function(x) paste(x[c(1,2,3,4)], collapse="#")) ans1[(length(idxP)+1):nrow(ans1),8:ncol(ans1)] <- as.matrix(peaklistN[idxN, coordsN]) } ans <- rbind(ans, as.matrix(ans1)) if(!is.null(molIon$cameraobj)) { figidx <- c(figidx,idx) figidx <- as.numeric(figidx[-1]) } else { figidx <- rbind(figidx,tmpidx) allidx <- figidx[-1,] allidx <- cbind(allidx, ans[ans[,6]!="",6]) figidx <- as.numeric(figidx[-1,1]) } if(m.test=="none") { testname <- "none" #testname <- "Formula" #ans[ans[,2]!="unknown",][,5] <- as.character(DB$formula[nid]) } if(m.test=="t.test") { normalize.medFC <- function(mat) { # Perform median fold change normalisation # X - data set [Variables & Samples] medSam <- apply(mat, 1, median) medSam[which(medSam==0)] <- 0.0001 mat <- apply(mat, 2, function(mat, medSam){ medFDiSmpl <- mat/medSam vec<-mat/median(medFDiSmpl) return(vec) }, medSam) return (mat) } # this piece of code was copied from xcms pval <- function(X, classlabel, teststat) { n1 <- rowSums(!is.na(X[,classlabel == 0])) n2 <- rowSums(!is.na(X[,classlabel == 1])) A <- apply(X[,classlabel == 0], 1, sd, na.rm=TRUE)^2/n1 ## sd(t(X[,classlabel == 0]), na.rm = TRUE)^2/n1 B <- apply(X[,classlabel == 1], 1, sd, na.rm=TRUE)^2/n2 ## sd(t(X[,classlabel == 1]), na.rm = TRUE)^2/n2 df <- (A+B)^2/(A^2/(n1-1)+B^2/(n2-1)) pvalue <- 2 * (1 - pt(abs(teststat), df)) invisible(pvalue) } c1 <- grep(class1, molIon$cameraobj@xcmsSet@phenoData[,1]) c2 <- grep(class2, molIon$cameraobj@xcmsSet@phenoData[,1]) testclab <- c(rep(0, length(c1)), rep(1, length(c2))) testval <- groupval(molIon$cameraobj@xcmsSet, "medret", "into") if(norm) testval <- normalize.medFC(testval) tstat <- mt.teststat(testval, testclab) pvalue <- pval(testval, testclab, tstat) # # rport <- diffreport(molIon$cameraobj@xcmsSet, class1=class1, class2= class2, sortpval=FALSE) # ans[ans[,6]!="",5] <- rport[figidx, "pvalue"] ans[ans[,6]!="",5] <- pvalue[figidx] testname <- "t.test p-value" } if(m.test=="anova"){ class <- molIon$cameraobj@xcmsSet@phenoData getPvalue <- function(dataidx) { aov.data <- data.frame(resp=as.numeric(peaklist[dataidx,coords]), class=class) anova(aov(resp~class, aov.data))$Pr[1] } testname <- "anova p-value" ans[ans[,6]!="",5] <- sapply(figidx, getPvalue) } header <- matrix(c("Proposed Mass","Most probable Compound","Probability","Entropy", testname,"EIC-plot", "Ion annotation",coords), nrow=1 , ncol=7+length(coords) ) ans <- rbind(header, ans) # additional field # ans <- cbind(ans[,1:2], ans[,2], ans[,3:ncol(ans)]) #ans[ans[,3]!="unknown",][-1,3] <- as.character(DB$sbml.id[nid]) if(html) { #require(hwriter) ansb <- ans ans[ans[,2]!="unknown",][-1,2] <- as.character(DB$name[nid]) if(linkPattern=="pubchem") ansb <- ans hyper=matrix(paste(linkURL, ansb[-1,2], sep=""),ncol=1 ) if(!is.null(molIon$cameraobj)) { hyper1=matrix(paste(fig, ans[-1,6],".png", sep=""),ncol=1 ) } else { hyper1 <- ans[-1,6] hyper1[ans[-1,6]!=""][allidx[,2]!="neg"] <- paste(hyper1[ans[-1,6]!=""][allidx[,2]!="neg"], "pos", sep="") hyper1[ans[-1,6]!=""][allidx[,2]=="neg"] <- paste(hyper1[ans[-1,6]!=""][allidx[,2]=="neg"], "neg", sep="") hyper1=matrix(paste(fig, hyper1,".png", sep=""),ncol=1 ) } p=openPage(paste(filename,".html",sep="")) ans2 <- ans[,1:7] link <- cbind(matrix(NA,nrow(ans2),1),rbind(NA,hyper),matrix(NA,nrow(ans2),3),rbind(NA,hyper1),matrix(NA,nrow(ans2),1)) # This block is responsible to add as many columns as the user # wants if(!is.null(addLink)){ for(l in 1:length(addLink$link)) { link <- cbind(link, rbind(NA, addLink[[l]])) } for(a in 1:length(addLink$ans)) { ans2 <- cbind(ans2,addLink$ans[[a]]) #colnames(ans2)[7+a] <- addLink$ans[[a]][1] } } hwrite(ans2, p,row.bgcolor='#ffdc98', link=link ) closePage(p) if(!is.null(molIon$cameraobj)) { plotEIC(molIon$cameraobj@xcmsSet, figidx, ans[ans[,6]!="",6][-1], colorplot=colorplot) } else { dataidxP <- as.numeric(allidx[allidx[,2]!="neg",1]) pngidxP <- allidx[allidx[,2]!="neg",3] plotEIC(molIon$pos@xcmsSet, dataidxP, pngidxP, "pos", colorplot=colorplot) dataidxN <- as.numeric(allidx[allidx[,2]=="neg",1]) pngidxN <- allidx[allidx[,2]=="neg",3] plotEIC(molIon$neg@xcmsSet, dataidxN, pngidxN, "neg", colorplot=colorplot) } } else { ansb <- ans } colnames(ansb) <- ansb[1,] ansb <- ansb[-1,] return(list(classTable=ansb, figidx=figidx)) }