Mercurial > repos > mora-lab > gsar
diff GSAR.R @ 1:8ff053661ae2 draft default tip
Uploaded
author | mora-lab |
---|---|
date | Thu, 20 May 2021 08:22:56 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/GSAR.R Thu May 20 08:22:56 2021 +0000 @@ -0,0 +1,117 @@ +############################################################################### +# title: Gene set analysis in R +# author: Xiaowei +# time: Mar.31 2021 +############################################################################### +#================================================================= +#how to pass parameters +#================================================================= +spec <- matrix(c("expr_file",'E', 1, 'character', 'Gene expression data which is an CSV file of expression values where rows correspond to genes and columns correspond to samples.', + "geneSet_file", 'G', 1, 'character', 'Gene set', + "design_file", 'D', 1, 'character', 'Design for the samples of expression data', + "min_size", 'I',1, 'numeric','a numeric value indicating the minimum allowed gene set size. Default value is 10.', + "max_size", 'A',1, 'numeric','a numeric value indicating the maximum allowed gene set size. Default value is 500.', + "test_method", 'T',1, 'character', "a character parameter indicating which statistical method to use for testing the gene sets. Must be one of 'GSNCAtest', 'WWtest', 'KStest', 'MDtest', 'RKStest', 'RMDtest'.", + "nperm_number", 'N', 1, 'numeric',"number of permutations used to estimate the null distribution of the test statistic. If not given, a default value 1000 is used.", + "cor_method", 'M', 1, 'character',"a character string indicating which correlation coefficient is to be computed. Possible values are 'pearson' (default), 'spearman' and 'kendall'. Default value is 'pearson'.", + "threshold_value", "V", 1, 'numeric', 'Threshold value for setting significant geneSet.', + "GSAR_output_p_value", 'R', 1, 'character',"P-value table", + "GSAR_output_plot", 'P', 1, 'character',"Plot genes relationships of significant pathway" + +), +byrow = TRUE, ncol = 5) + + +if (!requireNamespace("getopt", quietly = TRUE)) + install.packages("getopt") + +opt <- getopt::getopt(spec) + +#---------------- +#整理参数 +#---------------- +# expr_file +# geneSet_file +# design_file +if (is.null(opt$min_size)){min_size = 10}else{min_size = opt$min_size} +if (is.null(opt$max_size)){max_size = 500}else{max_size = opt$max_size} +if (is.null(opt$test_method)){test_method = "GSNCAtest"}else{test_method = opt$test_method} +if (is.null(opt$nperm_number)){nperm_number = 1000}else{nperm_number = opt$nperm_number} +if (is.null(opt$cor_method)){cor_method = "pearson"}else{cor_method = opt$cor_method} +if (is.null(opt$threshold_value)){threshold_value = 0.05}else{threshold_value = opt$threshold_value} + + +#================================================================ +#run codes +#================================================================ + +#--- load package ------------------ + +suppressPackageStartupMessages(library(GSAR)) +suppressPackageStartupMessages(library(GSEABase)) +options(stringsAsFactors = FALSE) +#---input -------------------------- +# expr +data <- as.matrix(read.csv(opt$expr_file, row.names = 1)) + +# design +design <- read.csv(opt$design_file, row.names = 1) +group <- design$group +label <- design$label + +# geneSet +load(opt$geneSet_file) +geneSetlist <- lapply(geneSet, geneIds) +names(geneSetlist) <- names(geneSet) + +#-------GSAR ------------------------- +# test.method <- c("GSNCAtest", "WWtest", "KStest", "MDtest", "RKStest", "RMDtest") +# “GSNCAtest”, “WWtest”, “KStest”, “MDtest”, “RKStest”, “RMDtest” +results <- TestGeneSets(object=data, group=group, + geneSets=geneSetlist, min.size=min_size, + max.size=max_size, test=test_method, + nperm = nperm_number) + + + +#================================================================ +#output +#================================================================ + + +# output p-value---------------------------------------------------- +resutlts1 <- as.data.frame(t(as.data.frame(results))) +colnames(resutlts1) = "P_value" +resutlts1$geneSet <- rownames(resutlts1) +resutlts1 <- resutlts1[,c("geneSet", "P_value")] +resutlts1 <- resutlts1[order(resutlts1$P_value),] +write.csv(resutlts1, file = opt$GSAR_output_p_value, row.names = FALSE) +#------------------------------------------------------------------- + + + +#plot ------------------------------------------------------------- +sig.paths <- names(results[results <= threshold_value]) + + +group1 <- unique(design[design$group == 1, "label"]) +group2 <- unique(design[design$group == 2, "label"]) +allgenes <- rownames(data) + +pdf(file = opt$GSAR_output_plot, width = 10.92) +if (length(sig.paths) > 0){ + for (sig.path in sig.paths){ + path.index <- allgenes %in% geneSetlist[[sig.path]] + ## Plot MST2 for a pathway in two conditions + plotMST2.pathway(object=data[path.index,], + group=group, name=sig.path, + legend.size=1.2, #leg.x=-1.2, leg.y=2, + label.size=1, label.dist=0.8, cor.method=cor_method, group1.name = group1, group2.name = group2) + + rm(sig.path, path.index) + } + +} +dev.off() + +