Mercurial > repos > mora-lab > mogsa
view mogsa.R @ 1:1f48d23544a5 draft default tip
Uploaded
author | mora-lab |
---|---|
date | Thu, 20 May 2021 08:48:44 +0000 |
parents | |
children |
line wrap: on
line source
############################################################################### # title: mogsa # author: Xiaowei # time: Mar.31 2021 ############################################################################### #================================================================= #how to pass parameters #================================================================= spec <- matrix(c("data_file", "D",1, "character", "mogsa data file, xlsx file", "geneSet_file", "G",1, "character", "gene set /pathway, rdata file, geneSet object", "design_file", "S",1, "character", "CSV file, colcode, label, sample", "PC_number", "P",1, "integer", "numbers for PCs", "w_data","W",1, "character", "uniform, lambdal, inertia", "proc_row", "O", 1, "character", "cnetre, center_ssq1, center_ssqN, center_ssqNm1", "ks_B","B",1, "character", "An integer to indicate the number of bootstrapping samples to calculated the p-value of KS statistic.", "p_adjust_method", "M", 1, "character", "p values adjust method", "output_file1", "R", 1, "character", "genesetScoreMatrix CSV file", "output_file2", "R2", 1, "character", "P value Matrix CSV file" ), byrow = TRUE, ncol = 5) if (!requireNamespace("getopt", quietly = TRUE)) install.packages("getopt") opt <- getopt::getopt(spec) if (is.null(opt$PC_number)){PC_number = 3}else{PC_number = opt$PC_number} if (is.null(opt$w_data)){w_data = "inertia"}else{w_data = opt$w_data} if (is.null(opt$proc_row)){proc_row = "center_ssq1"}else{proc_row = opt$proc_row} if (is.null(opt$ks_B)){ks_B = 1000}else{ks_B = opt$ks_B} if (is.null(opt$p_adjust_method)){p_adjust_method = "fdr"}else{p_adjust_method = opt$p_adjust_method} ########################################################## # load packages ########################################################## library(mogsa) library(openxlsx) #for load the xlsx file ########################################################## # Parameters ########################################################## sheets <- getSheetNames(opt$data_file) mogsa_data <- vector(mode = "list", length = length(sheets)) names(mogsa_data) = sheets for (sht in sheets){ mogsa_data[[sht]] <- read.xlsx(opt$data_file, sheet = sht, colNames = T, rowNames = T) } # design design <- read.csv(opt$design_file, header = T, stringsAsFactors = F) #分类别、分组别 groups <- as.factor(design$label) #if ("colcode" %in% colnames(design)){colcode <- design$colcode}else{colcode = NULL} # geneSet load(opt$geneSet_file) sup_data <- prepSupMoa(mogsa_data, geneSets=geneSet, minMatch = 1) ########################################################## # mogsaBasicRun ########################################################## mgsa1 <- mogsa(x = mogsa_data, sup=sup_data, nf=PC_number, proc.row = proc_row, w.data = w_data, statis = TRUE, ks.B = ks_B, p.adjust.method = p_adjust_method) ########################################################## # gene Set Score (GSS) Matrix 基因集打分矩阵 每个值表示该基因集在该样本的总体活性水平 ########################################################## # get the score matrix scores <- getmgsa(mgsa1, "score") write.csv(scores, file = opt$output_file1) ########################################################## # P value Matrix ########################################################## # 获取p值矩阵,行是基因集/pathway名称,列为样本名称 p.mat <- getmgsa(mgsa1, "p.val") # get p value matrix write.csv(p.mat, file = opt$output_file2)