Mercurial > repos > mora-lab > spia
view SPIA.xml @ 4:6445741c6c02 draft default tip
Uploaded
author | mora-lab |
---|---|
date | Thu, 20 May 2021 12:19:23 +0000 |
parents | |
children |
line wrap: on
line source
<tool id="SPIA" name="SPIA (Signaling Pathway Impact Analysis)" version="0.1.0" > <description>A method based on over-representation and signaling perturbation accumulation to analyze KEGG signaling pathways.</description> <requirements> <requirement type="package" version="1.20.3">r-getopt</requirement> <requirement type="package" version="2.42.0">bioconductor-SPIA</requirement> </requirements> <command detect_errors="exit_code"><![CDATA[ Rscript '$__tool_directory__/SPIA.R' -D '$input_data' -O '$organism' -R '$sigP_output' -P '$adv.P_value_threshold' -N '$adv.Number_bootstrap' -C '$adv.method_combine_pvalue' #if $adv.plot_perturbation=="True": -W -L '$SPIA_Perturbation_Plots' #end if #if $adv.pathwayId !="": -I '$adv.pathwayId' #end if ]]></command> <inputs> <param type="data" name="input_data" format="csv" multiple="false" label="Input data" help="A csv file including the columns ENTREZ, logFC, and adj.P.Val"/> <param type="text" name="organism" value="hsa" label="Organism" help="A three letter character designating the organism. Default is `hsa` (human). See a full list at https://www.genome.jp/kegg/catalog/org_list.html" /> <section name="adv" title="Advanced Options" expanded="false"> <param type="float" name="P_value_threshold" label="P value threshold to select DEgenes" value="0.05" min="0.00" max="1.00" help="Set a threshold value to define differentially expressed genes"/> <param type="integer" name="Number_bootstrap" value="2000" min="100" label="Bootstrap iterations" help="Number of bootstrap iterations used to compute the P PERT value. Should be larger than 100. A recommended value is 2000." /> <param type="select" name="method_combine_pvalue" label="Method to combine P values" help="Method used to combine the two types of p-values. If set to 'fisher' it will use Fisher's method. If set to 'norminv' it will use the normal inversion method."> <option value="fisher" selected="True">fisher</option> <option value="norminv">norminv</option> </param> <param type="boolean" name="plot_perturbation" truevalue="True" falsevalue="False" checked="False" label="Plot perturbation" help="If set to Yes, plot the gene perturbation accumulation vs log2 fold change for every gene on each pathway. Default is No." /> <param type="text" name="pathwayId" value="" label="Pathway IDs -- default as NULL and analysis all pathway. " help="Special one or more pathway to analysis, input pathway ID at here. For example: 03018, 03320."/> </section> </inputs> <outputs> <data name="sigP_output" format="csv" label="SPIA_enrich_kegg" /> <data format="pdf" name="SPIA_Perturbation_Plots" label="SPIA_Perturbation_Plots"> <filter>adv['plot_perturbation'] == True</filter> </data> </outputs> <tests> <test> <param name="input_data" value="SPIA_input.csv" ftype="csv" /> <output name="sigP_output" file="x.csv" ftype="csv" /> </test> </tests> <help><![CDATA[ .. class:: infomark **What it does** SPIA (Signaling pathway impact analysis) combines the evidence obtained from the classical enrichment analysis with a novel type of evidence, which measures the actual perturbation on a given pathway under a given condition. A bootstap procedure is used to assess the significance of the observed total pathway perturbation. Then we can calculate a global pathway significance P-value, which combines the enrichment and perturbation P-values. SPIA tool analyzes KEGG signaling pathways. ------- ========= **Input** ========= Basic options -------------- **Input data** The input data is a csv file, which includes the columns `ENTREZ`, `logFC` and `adj.P.Val`. This file contains all genes of your dataset. ====== ========== ======= ========== ========= ==== ======== logFC AveExpr t P.Value adj.P.Val B ENTREZ ====== ========== ======= ========== ========= ==== ======== 5.96 6.23 23.9 1.79e-17 9.78e-13 25.4 3491 5.14 7.49 17.4 1.56e-14 2.84e-10 21.0 2353 4.15 7.04 16.5 5.15e-14 7.04e-10 20.1 1958 2.43 9.59 14.1 1.29e-12 1.41e- 8 17.7 1843 1.53 8.22 11.0 1.69e-10 1.15e- 6 13.6 3725 1.43 5.33 10.5 4.27e-10 2.42e- 6 12.8 23645 ====== ========== ======= ========== ========= ==== ======== **Organism** A three letter word designating the organism of your data. Default is `hsa` (Human). See a full list of options at https://www.genome.jp/kegg/catalog/org_list.html. ------ Advanced Options ----------------- **P value threshold to select DEgenes** Set a threshold value to define differentially expressed genes. Default is 0.05. **Bootstrap iterations** Number of bootstrap iterations used to compute the `pPERT` value. Should be larger than 100. A recommended value is 2000. **Method to combine P values** Method used to combine the two types of p-values. If set to 'fisher' it will use Fisher's method. If set to 'norminv' it will use the normal inversion method. **Plot perturbation** If set to `Yes`, plots the gene perturbation accumulation vs log2 fold change for every gene on each pathway. Default is `No`. **Pathway IDs -- default as NULL and analysis all pathway.** if you want special one or more pathway to analysis, Input pathway id at here. for example: `03018, 03320`. ------ ========== **Output** ========== **CSV file** This file contains the ranked pathways and various statistics: - **Name** is the pathway name; - **ID** is the pathway ID; - **pSize** is the number of genes on the pathway; - **NDE** is the number of DE genes per pathway; - **tA** is the observed total perturbation accumulation in the pathway; - **pNDE** is the probability to observe at least NDE genes on the pathway using a hypergeometric model; - **pPERT** is the probability to observe a total accumulation more extreme than tA only by chance; - **pG** is the p-value obtained by combining pNDE and pPERT; - **pGFdr** and **pGFWER** are the False Discovery Rate and Bonferroni adjusted global p-values; - **Status** gives the direction in which the pathway is perturbed (activated or inhibited). - **KEGGLINK** gives a web link to the KEGG website that displays the pathway image with the differentially expressed genes highlighted in red. **PDF file** If the plot argument is set to `Yes`, it will output the plots for the gene perturbation accumulation vs log2 fold change for every gene on each pathway. ------ Please cite SPIA_ appropriately if you use them. .. _SPIA: https://pubmed.ncbi.nlm.nih.gov/18990722/ ]]></help> <citations> <citation type="doi">10.1093/bioinformatics/btn577</citation> </citations> </tool>