Mercurial > repos > mvdbeek > damidseq_polii_gene_call
view polii.gene.call @ 1:83ca801f21f9 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/damidseq_polII_gene_call commit 98722d2ca8205595f032361072aaab450e5f4f83
author | mvdbeek |
---|---|
date | Fri, 04 Jan 2019 14:43:20 -0500 |
parents | 1b5bd3b955ed |
children |
line wrap: on
line source
#!/usr/bin/env Rscript # polii.gene.call.r # Copyright © 2014-15, Owen Marshall # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or (at # your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 # USA ### FDR calcs ### # Method based on original perl scripts by Tony Southall (TDS) as published in # Southall et al. (2013). Dev Cell, 26(1), 101–12. doi:10.1016/j.devcel.2013.05.020 # # Significant modifications to the original methodology include: # * taking a linear regression of log data rather than trial-and-error curve fitting of non-log data # * using a linear regression for the final intercept value rather than using the average intercept value for all conditions # -- both of these should increase the accuracy of the final FDR value. version <- "1.0.2" cat(paste("polii.gene.call v",version,"\n", sep="")) library(tools) ### Read CLI options input.args <- commandArgs(trailingOnly = TRUE) in.files <- vector() read.ops <- function (x) { for (op in x) { if (any(grepl("^--",op))) { op <- gsub("^--","",op) y <- unlist(strsplit(op,"=")) if (y[1] == "help") { cat(paste("Usage: Rscript polii.gene.call.r --genes.file=[some_genes_file.gff] [list of .gatc.bedgraph or .gatc.gff ratio files to process]\n\n", sep="")) cat("Options:\n") for (n in names(op.args)) { cat(paste(" ",n,"=",op.args[[n]],"\n",sep="")) } cat("\n") quit("no",1) } if (!is.null(op.args[[ y[1] ]])) { op.args[[ y[1] ]] <<- y[2] } else { cat("Error: Option",y[1],"not recognised ...\n") quit("no",1) } } else { in.files <<- c(in.files,op) } } } write.ops <- function () { out.df <- data.frame() for (n in names(op.args)) { v <<- as.character(op.args[[n]]) df.line <- data.frame( option=n, value=v ) out.df <- rbind(out.df, df.line) } write.table(out.df,"input.args.single.txt",row.names=F) } op.args <- list( "genes.file" = "/mnt/data/Genomes/dmel_release/DmR6/DmR6.genes.gff", "iter" = 50000, "fdr" = 0.01 ) read.ops(input.args) if (length(in.files) == 0) { cat("Usage: Rscript polii.gene.call.r [list of .gatc.gff ratio files to process]\n\n") quit("no",1) } write.ops() ### save random seed for future reproducibility dump.random <- runif(1) my.seed <- .Random.seed write.table(my.seed,".randomseed") ### read genes file cat("Reading genes data file ...\n") genes.file=op.args[["genes.file"]] genes <- read.table(genes.file, comment.char="#", sep="\t", quote="", fill=T) names(genes) <- c('chr','source','type','start','end','score','strand','c','details') # only subset if there is a type termed "gene" if (any(genes$type == 'gene')) { genes <- subset(genes, type=='gene') } genes$name <- sapply(genes$details, FUN = function (x) {regmatches(x,gregexpr("(?<=Name=).*?(?=;)", x, perl=T))} ) genes <- genes[,c('chr','start','end','strand','name')] genes$chr <- gsub("^chr","",genes$chr,perl=T) if (nrow(genes) == 0) { cat("Error: unable to extract gene information from genes file\n\n") quit("no",1) } ### functions read.gff <- function (x,name="score") { fn.ext <- file_ext(x) if (grepl("gff",ignore.case=T,fn.ext)) { temp.data <- read.table(x,row.names=NULL) if (ncol(temp.data) > 5) { # GFF trim.data <- temp.data[,c(1,4,5,6)] } else { cat("Error: file does not appear to be in GFF format\n\n") quit("no",1) } } else if (grepl("bed",ignore.case=T,fn.ext)) { temp.data <- read.table(x,row.names=NULL,skip=1) if (ncol(temp.data) == 4) { # bedgraph trim.data <- temp.data } else { cat("Error: file does not appear to be in bedGraph format\n\n") quit("no",1) } } else { cat("Error: input file does not appear to be in bedGraph or GFF format ...\n\n") quit("no",1) } names(trim.data) <- c("chr","start","end",name) trim.data$chr <- gsub("^chr","",trim.data$chr,perl=T) return(trim.data) } gene.exp <- function (input.df, buffer=0, iter=50000, debug=F) { avg.exp <- data.frame(input.df[1,c(4:(length(names(input.df))))]) avg <- vector(length=(length(names(input.df)) - 4)) avg.exp <- avg.exp[0,] ### FDR calcs ### # Method based off perl scripts by Tony Southall (TDS) as published in # Southall et al. (2013). Dev Cell, 26(1), 101–12. doi:10.1016/j.devcel.2013.05.020 # # Significant modifications to the original methodology include: # * taking a linear regression of log data rather than trial-and-error curve fitting of non-log data # * using a linear regression for the final intercept value rather than using the average intercept value for all conditions # -- both of these should increase the accuracy of the final FDR value. input.len <- length(input.df[,1]) frag.samp <- c(1,2,3,4,6,8,10,12,15) thres.samp <- c(0.1,0.2,0.3,0.4,0.5,0.65,0.8,1.0,1.5,2.0) rand <- list() for (thres in thres.samp) { cat(paste(" Calculating FDR for threshold",thres,"\n",sep=" ")) # init vars for (f in frag.samp) { # List names are, e.g. frag 1, thres 0.2: rand[[thres.1.0.2]] rand[[paste("thres.",f,".",thres,sep="")]] <- 0; } for (i in 1:iter) { if (i %% 200 == 0) {cat(paste(" iter",i,"\r"))} # get random sample for different fragment lengths rand.samp <- list() for (f in frag.samp) { # Using the fourth column as we're only calculating FDR for one sample ... rand.samp[[paste("rand.",f,sep="")]] <- mean(input.df[runif(f,1,input.len),4]) } # count number of times exp > thres for (f in frag.samp) { if (rand.samp[[paste("rand.",f,sep="")]] > thres) {rand[[paste("thres.",f,".",thres,sep="")]] <- rand[[paste("thres.",f,".",thres,sep="")]] + 1} } } } rand.fdr <- list() for (thres in thres.samp) { for (f in frag.samp) { rand.fdr[[paste("thres.",f,".",thres,sep="")]] <- rand[[paste("thres.",f,".",thres,sep="")]]/iter } } cat("Fitting curves ...\n") # curve fit: fdr vs thresholds var.thres <- list() for (thres in thres.samp) { for (f in frag.samp) { var.thres[[paste("frags.",f,sep="")]] <- append(var.thres[[paste("frags.",f,sep="")]], rand.fdr[[paste("thres.",f,".",thres,sep="")]]) } } inf.log.lm <- function (v) { non.inf <- log(v) != -Inf ret <- lm(log(v)[non.inf] ~ thres.samp[non.inf]) return(ret) } # The relationship is exponential, so we need log data for a linear regression # (in R, linear regression is: y = lm$coefficients[[2]]x + lm$coefficients[[1]] ... ) var.lm <- list() for (f in frag.samp) { var.lm[[paste("frags.",f,sep="")]] <- inf.log.lm(var.thres[[paste("frags.",f,sep="")]]) } # ... and now we do a linear regression on the slopes and intercepts of our previous regressions # (This is the clever bit, and it actually seems to work. The correlation of slope to fragment size is linear ... # By doing this on the slope and intercept, we can now predict the FDR for any number of fragments with any expression.) slope <- vector() for (f in frag.samp) { slope <- append(slope, var.lm[[paste("frags.",f,sep="")]]$coefficients[[2]]) } # slope regression predicts the average slope slope.lm <- lm(slope ~ frag.samp) # TDS used an average intercept value for the intercept, however ... inter <- vector() for (f in frag.samp) { inter <- append(inter, var.lm[[paste("frags.",f,sep="")]]$coefficients[[1]]) } # ... there's actually quite a bit of variation of the intercept with real data, # so we're going to do a lin regression on the intercept instead. # # (I'm not convinced it's a true linear relationship. But it's close to linear, # and will certainly perform better than taking the mean intercept ...) # # If you're interested, set the debug flag to TRUE and take a look at the plots generated below ... inter.lm <- lm(inter ~ frag.samp) if (debug == T) { # plots for debugging/checking plot.debug <- function (y,x,l,name="Debug plot") { plot(y ~ x) abline(l) lsum <- summary(l) r2 <- lsum$r.squared legend("topleft",legend=r2,bty='n') title(name) dev.copy(png,paste(name,".png",sep=""));dev.off() } plot.debug(slope,frag.samp,slope.lm,name="correlation of slope") plot.debug(inter,frag.samp,inter.lm,name="correlation of intercepts") } # ok, so putting that all together ... fdr <- function (frags, expr) { inter.test <- inter.lm$coefficients[[2]] * frags + inter.lm$coefficients[[1]] slope.test <- slope.lm$coefficients[[2]] * frags + slope.lm$coefficients[[1]] fdr.out <- exp(slope.test * expr + inter.test) return(fdr.out) } ### Gene expression values ### cat("Calculating gene values ...\n") count <- 0 # unroll chromosomes for speed: for (chromo in unique(genes$chr)) { input.chr <- subset(input.df, chr==chromo) genes.chr <- subset(genes, chr==chromo) for (i in 1:length(genes.chr$name)) { # Roll through each gene # Note: the original script calculated expression values for a table of proteins, # here we just limit ourselves to the FDR for the first column past "chr", "start" and "end" # so if you're thinking of looking at chromatin, for example, put PolII as column 4 in your table! gene.start <- genes.chr[i,"start"] - buffer gene.end <- genes.chr[i,"end"] + buffer gene.start <- ifelse(gene.start < 1, 1, gene.start) # Create data frames for all gatc fragments covering current gene exp <- data.frame(input.chr[ (input.chr$start <= gene.end) & (input.chr$end >= gene.start) ,] ) gatc.num <- length(exp[,1]) # skip if no gatc fragments cover gene :( if (gatc.num == 0) {next} # trim to gene boundaries ... exp$start[1] <- gene.start exp$end[length(exp[,1])] <- gene.end # gene length covered by gatc fragments len <- sum(exp$end-exp$start) # calculate weighted score for each column (representing different proteins) for (j in 4:length(names(input.chr))) { avg[j] <- (sum((exp$end-exp$start)*exp[j]))/len } # make data.frame of averages (to be appended to avg.exp) df <- cbind(avg[1]) for (k in 2:length(avg)) { df <- cbind(df,avg[k]) } df <- cbind(df,gatc.num) # only fdr for first column for now ... gene.fdr <- fdr(gatc.num,avg[4]) df <- cbind(df, gene.fdr) # append current gene to list avg.exp <- rbind(avg.exp,data.frame(name=as.character(genes.chr[i,"name"]), df)) count <- count+1 if (count %% 50 == 0) {cat(paste(count,"genes averaged ...\r"))} } } avg.exp <- avg.exp[,c(1,5:(length(names(avg.exp))))] names(avg.exp) <- c("name",names(input.df)[c(4:(length(names(input.df))))],"gatc.num","FDR") return(avg.exp) } for (name in in.files) { cat(paste("\nNow working on",name,"...\n")) bname <- basename(name) fname <- sub("\\..*","",bname,perl=T) polii <- read.gff(name,"polii") polii.exp <- gene.exp(polii, iter=as.numeric(op.args[["iter"]])) out <- subset(polii.exp,FDR < op.args[["fdr"]]) write.table(polii.exp,paste(fname,"genes.details.csv",sep="."),row.names=F,col.names=T,quote=T,sep="\t") write.table(out$name, paste(fname,"genes",sep="."),row.names=F,col.names=F,quote=F) } cat("\nAll done.\n\n")