Mercurial > repos > mvdbeek > mismatch_frequencies
comparison mismatch_frequencies.py @ 0:77de5fc623f9 draft
planemo upload for repository https://bitbucket.org/drosofff/gedtools/
author | mvdbeek |
---|---|
date | Wed, 27 May 2015 13:40:23 -0400 |
parents | |
children | 2974c382105c |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:77de5fc623f9 |
---|---|
1 import pysam, re, string | |
2 import matplotlib.pyplot as plt | |
3 import pandas as pd | |
4 import json | |
5 from collections import defaultdict | |
6 from collections import OrderedDict | |
7 import argparse | |
8 import itertools | |
9 | |
10 class MismatchFrequencies: | |
11 '''Iterate over a SAM/BAM alignment file, collecting reads with mismatches. One | |
12 class instance per alignment file. The result_dict attribute will contain a | |
13 nested dictionary with name, readlength and mismatch count.''' | |
14 def __init__(self, result_dict={}, alignment_file=None, name="name", minimal_readlength=21, | |
15 maximal_readlength=21, | |
16 number_of_allowed_mismatches=1, | |
17 ignore_5p_nucleotides=0, | |
18 ignore_3p_nucleotides=0, | |
19 possible_mismatches = [ | |
20 'AC', 'AG', 'AT', | |
21 'CA', 'CG', 'CT', | |
22 'GA', 'GC', 'GT', | |
23 'TA', 'TC', 'TG' | |
24 ]): | |
25 | |
26 self.result_dict = result_dict | |
27 self.name = name | |
28 self.minimal_readlength = minimal_readlength | |
29 self.maximal_readlength = maximal_readlength | |
30 self.number_of_allowed_mismatches = number_of_allowed_mismatches | |
31 self.ignore_5p_nucleotides = ignore_5p_nucleotides | |
32 self.ignore_3p_nucleotides = ignore_3p_nucleotides | |
33 self.possible_mismatches = possible_mismatches | |
34 | |
35 if alignment_file: | |
36 self.pysam_alignment = pysam.Samfile(alignment_file) | |
37 self.references = self.pysam_alignment.references #names of fasta reference sequences | |
38 result_dict[name]=self.get_mismatches( | |
39 self.pysam_alignment, | |
40 minimal_readlength, | |
41 maximal_readlength, | |
42 possible_mismatches | |
43 ) | |
44 | |
45 def get_mismatches(self, pysam_alignment, minimal_readlength, | |
46 maximal_readlength, possible_mismatches): | |
47 mismatch_dict = defaultdict(int) | |
48 rec_dd = lambda: defaultdict(rec_dd) | |
49 len_dict = rec_dd() | |
50 for alignedread in pysam_alignment: | |
51 if self.read_is_valid(alignedread, minimal_readlength, maximal_readlength): | |
52 chromosome = pysam_alignment.getrname(alignedread.rname) | |
53 try: | |
54 len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] += 1 | |
55 except TypeError: | |
56 len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] = 1 | |
57 MD = alignedread.opt('MD') | |
58 if self.read_has_mismatch(alignedread, self.number_of_allowed_mismatches): | |
59 (ref_base, mismatch_base)=self.read_to_reference_mismatch(MD, alignedread.seq, alignedread.is_reverse) | |
60 if ref_base == None: | |
61 continue | |
62 else: | |
63 for i, base in enumerate(ref_base): | |
64 if not ref_base[i]+mismatch_base[i] in possible_mismatches: | |
65 continue | |
66 try: | |
67 len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] += 1 | |
68 except TypeError: | |
69 len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] = 1 | |
70 return len_dict | |
71 | |
72 def read_is_valid(self, read, min_readlength, max_readlength): | |
73 '''Filter out reads that are unmatched, too short or | |
74 too long or that contian insertions''' | |
75 if read.is_unmapped: | |
76 return False | |
77 if read.rlen < min_readlength: | |
78 return False | |
79 if read.rlen > max_readlength: | |
80 return False | |
81 else: | |
82 return True | |
83 | |
84 def read_has_mismatch(self, read, number_of_allowed_mismatches=1): | |
85 '''keep only reads with one mismatch. Could be simplified''' | |
86 NM=read.opt('NM') | |
87 if NM <1: #filter out reads with no mismatch | |
88 return False | |
89 if NM >number_of_allowed_mismatches: #filter out reads with more than 1 mismtach | |
90 return False | |
91 else: | |
92 return True | |
93 | |
94 def mismatch_in_allowed_region(self, readseq, mismatch_position): | |
95 ''' | |
96 >>> M = MismatchFrequencies() | |
97 >>> readseq = 'AAAAAA' | |
98 >>> mismatch_position = 2 | |
99 >>> M.mismatch_in_allowed_region(readseq, mismatch_position) | |
100 True | |
101 >>> M = MismatchFrequencies(ignore_3p_nucleotides=2, ignore_5p_nucleotides=2) | |
102 >>> readseq = 'AAAAAA' | |
103 >>> mismatch_position = 1 | |
104 >>> M.mismatch_in_allowed_region(readseq, mismatch_position) | |
105 False | |
106 >>> readseq = 'AAAAAA' | |
107 >>> mismatch_position = 4 | |
108 >>> M.mismatch_in_allowed_region(readseq, mismatch_position) | |
109 False | |
110 ''' | |
111 mismatch_position+=1 # To compensate for starting the count at 0 | |
112 five_p = self.ignore_5p_nucleotides | |
113 three_p = self.ignore_3p_nucleotides | |
114 if any([five_p > 0, three_p > 0]): | |
115 if any([mismatch_position <= five_p, | |
116 mismatch_position >= (len(readseq)+1-three_p)]): #Again compensate for starting the count at 0 | |
117 return False | |
118 else: | |
119 return True | |
120 else: | |
121 return True | |
122 | |
123 def read_to_reference_mismatch(self, MD, readseq, is_reverse): | |
124 ''' | |
125 This is where the magic happens. The MD tag contains SNP and indel information, | |
126 without looking to the genome sequence. This is a typical MD tag: 3C0G2A6. | |
127 3 bases of the read align to the reference, followed by a mismatch, where the | |
128 reference base is C, followed by 10 bases aligned to the reference. | |
129 suppose a reference 'CTTCGATAATCCTT' | |
130 ||| || |||||| | |
131 and a read 'CTTATATTATCCTT'. | |
132 This situation is represented by the above MD tag. | |
133 Given MD tag and read sequence this function returns the reference base C, G and A, | |
134 and the mismatched base A, T, T. | |
135 >>> M = MismatchFrequencies() | |
136 >>> MD='3C0G2A7' | |
137 >>> seq='CTTATATTATCCTT' | |
138 >>> result=M.read_to_reference_mismatch(MD, seq, is_reverse=False) | |
139 >>> result[0]=="CGA" | |
140 True | |
141 >>> result[1]=="ATT" | |
142 True | |
143 >>> | |
144 ''' | |
145 search=re.finditer('[ATGC]',MD) | |
146 if '^' in MD: | |
147 print 'WARNING insertion detected, mismatch calling skipped for this read!!!' | |
148 return (None, None) | |
149 start_index=0 # refers to the leading integer of the MD string before an edited base | |
150 current_position=0 # position of the mismatched nucleotide in the MD tag string | |
151 mismatch_position=0 # position of edited base in current read | |
152 reference_base="" | |
153 mismatched_base="" | |
154 for result in search: | |
155 current_position=result.start() | |
156 mismatch_position=mismatch_position+1+int(MD[start_index:current_position]) #converts the leading characters before an edited base into integers | |
157 start_index=result.end() | |
158 reference_base+=MD[result.end()-1] | |
159 mismatched_base+=readseq[mismatch_position-1] | |
160 if is_reverse: | |
161 reference_base=reverseComplement(reference_base) | |
162 mismatched_base=reverseComplement(mismatched_base) | |
163 mismatch_position=len(readseq)-mismatch_position-1 | |
164 if mismatched_base=='N': | |
165 return (None, None) | |
166 if self.mismatch_in_allowed_region(readseq, mismatch_position): | |
167 return (reference_base, mismatched_base) | |
168 else: | |
169 return (None, None) | |
170 | |
171 def reverseComplement(sequence): | |
172 '''do a reverse complement of DNA base. | |
173 >>> reverseComplement('ATGC')=='GCAT' | |
174 True | |
175 >>> | |
176 ''' | |
177 sequence=sequence.upper() | |
178 complement = string.maketrans('ATCGN', 'TAGCN') | |
179 return sequence.upper().translate(complement)[::-1] | |
180 | |
181 def barplot(df, library, axes): | |
182 df.plot(kind='bar', ax=axes, subplots=False,\ | |
183 stacked=False, legend='test',\ | |
184 title='Mismatch frequencies for {0}'.format(library)) | |
185 | |
186 def df_to_tab(df, output): | |
187 df.to_csv(output, sep='\t') | |
188 | |
189 def reduce_result(df, possible_mismatches): | |
190 '''takes a pandas dataframe with full mismatch details and | |
191 summarises the results for plotting.''' | |
192 alignments = df['Alignment_file'].unique() | |
193 readlengths = df['Readlength'].unique() | |
194 combinations = itertools.product(*[alignments, readlengths]) #generate all possible combinations of readlength and alignment files | |
195 reduced_dict = {} | |
196 frames = [] | |
197 last_column = 3+len(possible_mismatches) | |
198 for combination in combinations: | |
199 library_subset = df[df['Alignment_file'] == combination[0]] | |
200 library_readlength_subset = library_subset[library_subset['Readlength'] == combination[1]] | |
201 sum_of_library_and_readlength = library_readlength_subset.iloc[:,3:last_column+1].sum() | |
202 if not reduced_dict.has_key(combination[0]): | |
203 reduced_dict[combination[0]] = {} | |
204 reduced_dict[combination[0]][combination[1]] = sum_of_library_and_readlength.to_dict() | |
205 return reduced_dict | |
206 | |
207 def plot_result(reduced_dict, args): | |
208 names=reduced_dict.keys() | |
209 nrows=len(names)/2+1 | |
210 fig = plt.figure(figsize=(16,32)) | |
211 for i,library in enumerate (names): | |
212 axes=fig.add_subplot(nrows,2,i+1) | |
213 library_dict=reduced_dict[library] | |
214 df=pd.DataFrame(library_dict) | |
215 df.drop(['total aligned reads'], inplace=True) | |
216 barplot(df, library, axes), | |
217 axes.set_ylabel('Mismatch count / all valid reads * readlength') | |
218 fig.savefig(args.output_pdf, format='pdf') | |
219 | |
220 def format_result_dict(result_dict, chromosomes, possible_mismatches): | |
221 '''Turn nested dictionary into preformatted tab seperated lines''' | |
222 header = "Reference sequence\tAlignment_file\tReadlength\t" + "\t".join( | |
223 possible_mismatches) + "\ttotal aligned reads" | |
224 libraries = result_dict.keys() | |
225 readlengths = result_dict[libraries[0]].keys() | |
226 result = [] | |
227 for chromosome in chromosomes: | |
228 for library in libraries: | |
229 for readlength in readlengths: | |
230 line = [] | |
231 line.extend([chromosome, library, readlength]) | |
232 try: | |
233 line.extend([result_dict[library][readlength][chromosome].get(mismatch, 0) for mismatch in possible_mismatches]) | |
234 line.extend([result_dict[library][readlength][chromosome].get(u'total valid reads', 0)]) | |
235 except KeyError: | |
236 line.extend([0 for mismatch in possible_mismatches]) | |
237 line.extend([0]) | |
238 result.append(line) | |
239 df = pd.DataFrame(result, columns=header.split('\t')) | |
240 last_column=3+len(possible_mismatches) | |
241 df['mismatches/per aligned nucleotides'] = df.iloc[:,3:last_column].sum(1)/(df.iloc[:,last_column]*df['Readlength']) | |
242 return df | |
243 | |
244 def setup_MismatchFrequencies(args): | |
245 resultDict=OrderedDict() | |
246 kw_list=[{'result_dict' : resultDict, | |
247 'alignment_file' :alignment_file, | |
248 'name' : name, | |
249 'minimal_readlength' : args.min, | |
250 'maximal_readlength' : args.max, | |
251 'number_of_allowed_mismatches' : args.n_mm, | |
252 'ignore_5p_nucleotides' : args.five_p, | |
253 'ignore_3p_nucleotides' : args.three_p, | |
254 'possible_mismatches' : args.possible_mismatches } | |
255 for alignment_file, name in zip(args.input, args.name)] | |
256 return (kw_list, resultDict) | |
257 | |
258 def nested_dict_to_df(dictionary): | |
259 dictionary = {(outerKey, innerKey): values for outerKey, innerDict in dictionary.iteritems() for innerKey, values in innerDict.iteritems()} | |
260 df=pd.DataFrame.from_dict(dictionary).transpose() | |
261 df.index.names = ['Library', 'Readlength'] | |
262 return df | |
263 | |
264 def run_MismatchFrequencies(args): | |
265 kw_list, resultDict=setup_MismatchFrequencies(args) | |
266 references = [MismatchFrequencies(**kw_dict).references for kw_dict in kw_list] | |
267 return (resultDict, references[0]) | |
268 | |
269 def main(): | |
270 result_dict, references = run_MismatchFrequencies(args) | |
271 df = format_result_dict(result_dict, references, args.possible_mismatches) | |
272 reduced_dict = reduce_result(df, args.possible_mismatches) | |
273 plot_result(reduced_dict, args) | |
274 reduced_df = nested_dict_to_df(reduced_dict) | |
275 df_to_tab(reduced_df, args.output_tab) | |
276 if not args.expanded_output_tab == None: | |
277 df_to_tab(df, args.expanded_output_tab) | |
278 return reduced_dict | |
279 | |
280 if __name__ == "__main__": | |
281 | |
282 parser = argparse.ArgumentParser(description='Produce mismatch statistics for BAM/SAM alignment files.') | |
283 parser.add_argument('--input', nargs='*', help='Input files in SAM/BAM format') | |
284 parser.add_argument('--name', nargs='*', help='Name for input file to display in output file. Should have same length as the number of inputs') | |
285 parser.add_argument('--output_pdf', help='Output filename for graph') | |
286 parser.add_argument('--output_tab', help='Output filename for table') | |
287 parser.add_argument('--expanded_output_tab', default=None, help='Output filename for table') | |
288 parser.add_argument('--possible_mismatches', default=[ | |
289 'AC', 'AG', 'AT','CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG' | |
290 ], nargs='+', help='specify mismatches that should be counted for the mismatch frequency. The format is Reference base -> observed base, eg AG for A to G mismatches.') | |
291 parser.add_argument('--min', '--minimal_readlength', type=int, help='minimum readlength') | |
292 parser.add_argument('--max', '--maximal_readlength', type=int, help='maximum readlength') | |
293 parser.add_argument('--n_mm', '--number_allowed_mismatches', type=int, default=1, help='discard reads with more than n mismatches') | |
294 parser.add_argument('--five_p', '--ignore_5p_nucleotides', type=int, default=0, help='when calculating nucleotide mismatch frequencies ignore the first N nucleotides of the read') | |
295 parser.add_argument('--three_p', '--ignore_3p_nucleotides', type=int, default=1, help='when calculating nucleotide mismatch frequencies ignore the last N nucleotides of the read') | |
296 #args = parser.parse_args(['--input', '3mismatches_ago2ip_s2.bam', '3mismatches_ago2ip_ovary.bam','--possible_mismatches','AC','AG', 'CG', 'TG', 'CT','--name', 'Siomi1', 'Siomi2' , '--five_p', '3','--three_p','3','--output_pdf', 'out.pdf', '--output_tab', 'out.tab', '--expanded_output_tab', 'expanded.tab', '--min', '20', '--max', '22']) | |
297 args = parser.parse_args() | |
298 reduced_dict = main() | |
299 | |
300 |