Mercurial > repos > mvdbeek > mismatch_frequencies
comparison mismatch_frequencies.py @ 2:2974c382105c draft default tip
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/mismatch_frequencies commit 10a7e3877c2568d9c23de53fc97dc1c902ff0524-dirty
author | mvdbeek |
---|---|
date | Sat, 22 Dec 2018 04:15:47 -0500 |
parents | 77de5fc623f9 |
children |
comparison
equal
deleted
inserted
replaced
1:3613460e891e | 2:2974c382105c |
---|---|
1 import pysam, re, string | 1 import re |
2 import matplotlib.pyplot as plt | 2 import string |
3 import pysam | |
4 import matplotlib | |
3 import pandas as pd | 5 import pandas as pd |
4 import json | |
5 from collections import defaultdict | 6 from collections import defaultdict |
6 from collections import OrderedDict | 7 from collections import OrderedDict |
7 import argparse | 8 import argparse |
8 import itertools | 9 import itertools |
9 | 10 |
11 matplotlib.use('pdf') | |
12 import matplotlib.pyplot as plt # noqa: E402 | |
13 | |
14 | |
10 class MismatchFrequencies: | 15 class MismatchFrequencies: |
11 '''Iterate over a SAM/BAM alignment file, collecting reads with mismatches. One | 16 '''Iterate over a SAM/BAM alignment file, collecting reads with mismatches. One |
12 class instance per alignment file. The result_dict attribute will contain a | 17 class instance per alignment file. The result_dict attribute will contain a |
13 nested dictionary with name, readlength and mismatch count.''' | 18 nested dictionary with name, readlength and mismatch count.''' |
14 def __init__(self, result_dict={}, alignment_file=None, name="name", minimal_readlength=21, | 19 def __init__(self, result_dict={}, alignment_file=None, name="name", minimal_readlength=21, |
15 maximal_readlength=21, | 20 maximal_readlength=21, |
16 number_of_allowed_mismatches=1, | 21 number_of_allowed_mismatches=1, |
17 ignore_5p_nucleotides=0, | 22 ignore_5p_nucleotides=0, |
18 ignore_3p_nucleotides=0, | 23 ignore_3p_nucleotides=0, |
19 possible_mismatches = [ | 24 possible_mismatches=[ |
20 'AC', 'AG', 'AT', | 25 'AC', 'AG', 'AT', |
21 'CA', 'CG', 'CT', | 26 'CA', 'CG', 'CT', |
22 'GA', 'GC', 'GT', | 27 'GA', 'GC', 'GT', |
23 'TA', 'TC', 'TG' | 28 'TA', 'TC', 'TG' |
24 ]): | 29 ]): |
25 | 30 |
26 self.result_dict = result_dict | 31 self.result_dict = result_dict |
27 self.name = name | 32 self.name = name |
28 self.minimal_readlength = minimal_readlength | 33 self.minimal_readlength = minimal_readlength |
29 self.maximal_readlength = maximal_readlength | 34 self.maximal_readlength = maximal_readlength |
30 self.number_of_allowed_mismatches = number_of_allowed_mismatches | 35 self.number_of_allowed_mismatches = number_of_allowed_mismatches |
31 self.ignore_5p_nucleotides = ignore_5p_nucleotides | 36 self.ignore_5p_nucleotides = ignore_5p_nucleotides |
32 self.ignore_3p_nucleotides = ignore_3p_nucleotides | 37 self.ignore_3p_nucleotides = ignore_3p_nucleotides |
33 self.possible_mismatches = possible_mismatches | 38 self.possible_mismatches = possible_mismatches |
34 | 39 |
35 if alignment_file: | 40 if alignment_file: |
36 self.pysam_alignment = pysam.Samfile(alignment_file) | 41 self.pysam_alignment = pysam.Samfile(alignment_file) |
37 self.references = self.pysam_alignment.references #names of fasta reference sequences | 42 self.references = self.pysam_alignment.references # names of fasta reference sequences |
38 result_dict[name]=self.get_mismatches( | 43 result_dict[name] = self.get_mismatches( |
39 self.pysam_alignment, | 44 self.pysam_alignment, |
40 minimal_readlength, | 45 minimal_readlength, |
41 maximal_readlength, | 46 maximal_readlength, |
42 possible_mismatches | 47 possible_mismatches |
43 ) | 48 ) |
44 | 49 |
45 def get_mismatches(self, pysam_alignment, minimal_readlength, | 50 def get_mismatches(self, pysam_alignment, minimal_readlength, |
46 maximal_readlength, possible_mismatches): | 51 maximal_readlength, possible_mismatches): |
47 mismatch_dict = defaultdict(int) | |
48 rec_dd = lambda: defaultdict(rec_dd) | 52 rec_dd = lambda: defaultdict(rec_dd) |
49 len_dict = rec_dd() | 53 len_dict = rec_dd() |
50 for alignedread in pysam_alignment: | 54 for alignedread in pysam_alignment: |
51 if self.read_is_valid(alignedread, minimal_readlength, maximal_readlength): | 55 if self.read_is_valid(alignedread, minimal_readlength, maximal_readlength): |
52 chromosome = pysam_alignment.getrname(alignedread.rname) | 56 chromosome = pysam_alignment.getrname(alignedread.rname) |
54 len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] += 1 | 58 len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] += 1 |
55 except TypeError: | 59 except TypeError: |
56 len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] = 1 | 60 len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] = 1 |
57 MD = alignedread.opt('MD') | 61 MD = alignedread.opt('MD') |
58 if self.read_has_mismatch(alignedread, self.number_of_allowed_mismatches): | 62 if self.read_has_mismatch(alignedread, self.number_of_allowed_mismatches): |
59 (ref_base, mismatch_base)=self.read_to_reference_mismatch(MD, alignedread.seq, alignedread.is_reverse) | 63 (ref_base, mismatch_base) = self.read_to_reference_mismatch(MD, alignedread.seq, alignedread.is_reverse) |
60 if ref_base == None: | 64 if not ref_base: |
61 continue | 65 continue |
62 else: | 66 else: |
63 for i, base in enumerate(ref_base): | 67 for i, base in enumerate(ref_base): |
64 if not ref_base[i]+mismatch_base[i] in possible_mismatches: | 68 if not ref_base[i]+mismatch_base[i] in possible_mismatches: |
65 continue | 69 continue |
66 try: | 70 try: |
67 len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] += 1 | 71 len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] += 1 |
68 except TypeError: | 72 except TypeError: |
69 len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] = 1 | 73 len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] = 1 |
70 return len_dict | 74 return len_dict |
71 | 75 |
72 def read_is_valid(self, read, min_readlength, max_readlength): | 76 def read_is_valid(self, read, min_readlength, max_readlength): |
73 '''Filter out reads that are unmatched, too short or | 77 '''Filter out reads that are unmatched, too short or |
74 too long or that contian insertions''' | 78 too long or that contian insertions''' |
75 if read.is_unmapped: | 79 if read.is_unmapped: |
76 return False | 80 return False |
78 return False | 82 return False |
79 if read.rlen > max_readlength: | 83 if read.rlen > max_readlength: |
80 return False | 84 return False |
81 else: | 85 else: |
82 return True | 86 return True |
83 | 87 |
84 def read_has_mismatch(self, read, number_of_allowed_mismatches=1): | 88 def read_has_mismatch(self, read, number_of_allowed_mismatches=1): |
85 '''keep only reads with one mismatch. Could be simplified''' | 89 '''keep only reads with one mismatch. Could be simplified''' |
86 NM=read.opt('NM') | 90 NM = read.opt('NM') |
87 if NM <1: #filter out reads with no mismatch | 91 if NM < 1: # filter out reads with no mismatch |
88 return False | 92 return False |
89 if NM >number_of_allowed_mismatches: #filter out reads with more than 1 mismtach | 93 if NM > number_of_allowed_mismatches: # filter out reads with more than 1 mismtach |
90 return False | 94 return False |
91 else: | 95 else: |
92 return True | 96 return True |
93 | 97 |
94 def mismatch_in_allowed_region(self, readseq, mismatch_position): | 98 def mismatch_in_allowed_region(self, readseq, mismatch_position): |
95 ''' | 99 ''' |
96 >>> M = MismatchFrequencies() | 100 >>> M = MismatchFrequencies() |
97 >>> readseq = 'AAAAAA' | 101 >>> readseq = 'AAAAAA' |
98 >>> mismatch_position = 2 | 102 >>> mismatch_position = 2 |
106 >>> readseq = 'AAAAAA' | 110 >>> readseq = 'AAAAAA' |
107 >>> mismatch_position = 4 | 111 >>> mismatch_position = 4 |
108 >>> M.mismatch_in_allowed_region(readseq, mismatch_position) | 112 >>> M.mismatch_in_allowed_region(readseq, mismatch_position) |
109 False | 113 False |
110 ''' | 114 ''' |
111 mismatch_position+=1 # To compensate for starting the count at 0 | 115 mismatch_position += 1 # To compensate for starting the count at 0 |
112 five_p = self.ignore_5p_nucleotides | 116 five_p = self.ignore_5p_nucleotides |
113 three_p = self.ignore_3p_nucleotides | 117 three_p = self.ignore_3p_nucleotides |
114 if any([five_p > 0, three_p > 0]): | 118 if any([five_p > 0, three_p > 0]): |
115 if any([mismatch_position <= five_p, | 119 if any([mismatch_position <= five_p, |
116 mismatch_position >= (len(readseq)+1-three_p)]): #Again compensate for starting the count at 0 | 120 mismatch_position >= (len(readseq) + 1 - three_p)]): # Again compensate for starting the count at 0 |
117 return False | 121 return False |
118 else: | 122 else: |
119 return True | 123 return True |
120 else: | 124 else: |
121 return True | 125 return True |
122 | 126 |
123 def read_to_reference_mismatch(self, MD, readseq, is_reverse): | 127 def read_to_reference_mismatch(self, MD, readseq, is_reverse): |
124 ''' | 128 ''' |
125 This is where the magic happens. The MD tag contains SNP and indel information, | 129 This is where the magic happens. The MD tag contains SNP and indel information, |
126 without looking to the genome sequence. This is a typical MD tag: 3C0G2A6. | 130 without looking to the genome sequence. This is a typical MD tag: 3C0G2A6. |
127 3 bases of the read align to the reference, followed by a mismatch, where the | 131 3 bases of the read align to the reference, followed by a mismatch, where the |
128 reference base is C, followed by 10 bases aligned to the reference. | 132 reference base is C, followed by 10 bases aligned to the reference. |
129 suppose a reference 'CTTCGATAATCCTT' | 133 suppose a reference 'CTTCGATAATCCTT' |
130 ||| || |||||| | 134 ||| || |||||| |
131 and a read 'CTTATATTATCCTT'. | 135 and a read 'CTTATATTATCCTT'. |
132 This situation is represented by the above MD tag. | 136 This situation is represented by the above MD tag. |
133 Given MD tag and read sequence this function returns the reference base C, G and A, | 137 Given MD tag and read sequence this function returns the reference base C, G and A, |
134 and the mismatched base A, T, T. | 138 and the mismatched base A, T, T. |
135 >>> M = MismatchFrequencies() | 139 >>> M = MismatchFrequencies() |
136 >>> MD='3C0G2A7' | 140 >>> MD='3C0G2A7' |
137 >>> seq='CTTATATTATCCTT' | 141 >>> seq='CTTATATTATCCTT' |
138 >>> result=M.read_to_reference_mismatch(MD, seq, is_reverse=False) | 142 >>> result=M.read_to_reference_mismatch(MD, seq, is_reverse=False) |
139 >>> result[0]=="CGA" | 143 >>> result[0]=="CGA" |
140 True | 144 True |
141 >>> result[1]=="ATT" | 145 >>> result[1]=="ATT" |
142 True | 146 True |
143 >>> | 147 >>> |
144 ''' | 148 ''' |
145 search=re.finditer('[ATGC]',MD) | 149 search = re.finditer('[ATGC]', MD) |
146 if '^' in MD: | 150 if '^' in MD: |
147 print 'WARNING insertion detected, mismatch calling skipped for this read!!!' | 151 print 'WARNING insertion detected, mismatch calling skipped for this read!!!' |
148 return (None, None) | 152 return (None, None) |
149 start_index=0 # refers to the leading integer of the MD string before an edited base | 153 start_index = 0 # refers to the leading integer of the MD string before an edited base |
150 current_position=0 # position of the mismatched nucleotide in the MD tag string | 154 current_position = 0 # position of the mismatched nucleotide in the MD tag string |
151 mismatch_position=0 # position of edited base in current read | 155 mismatch_position = 0 # position of edited base in current read |
152 reference_base="" | 156 reference_base = "" |
153 mismatched_base="" | 157 mismatched_base = "" |
154 for result in search: | 158 for result in search: |
155 current_position=result.start() | 159 current_position = result.start() |
156 mismatch_position=mismatch_position+1+int(MD[start_index:current_position]) #converts the leading characters before an edited base into integers | 160 mismatch_position = mismatch_position + 1 + int(MD[start_index:current_position]) # converts the leading characters before an edited base into integers |
157 start_index=result.end() | 161 start_index = result.end() |
158 reference_base+=MD[result.end()-1] | 162 reference_base += MD[result.end() - 1] |
159 mismatched_base+=readseq[mismatch_position-1] | 163 mismatched_base += readseq[mismatch_position - 1] |
160 if is_reverse: | 164 if is_reverse: |
161 reference_base=reverseComplement(reference_base) | 165 reference_base = reverseComplement(reference_base) |
162 mismatched_base=reverseComplement(mismatched_base) | 166 mismatched_base = reverseComplement(mismatched_base) |
163 mismatch_position=len(readseq)-mismatch_position-1 | 167 mismatch_position = len(readseq)-mismatch_position-1 |
164 if mismatched_base=='N': | 168 if mismatched_base == 'N': |
165 return (None, None) | 169 return (None, None) |
166 if self.mismatch_in_allowed_region(readseq, mismatch_position): | 170 if self.mismatch_in_allowed_region(readseq, mismatch_position): |
167 return (reference_base, mismatched_base) | 171 return (reference_base, mismatched_base) |
168 else: | 172 else: |
169 return (None, None) | 173 return (None, None) |
170 | 174 |
175 | |
171 def reverseComplement(sequence): | 176 def reverseComplement(sequence): |
172 '''do a reverse complement of DNA base. | 177 '''do a reverse complement of DNA base. |
173 >>> reverseComplement('ATGC')=='GCAT' | 178 >>> reverseComplement('ATGC')=='GCAT' |
174 True | 179 True |
175 >>> | 180 >>> |
176 ''' | 181 ''' |
177 sequence=sequence.upper() | 182 sequence = sequence.upper() |
178 complement = string.maketrans('ATCGN', 'TAGCN') | 183 complement = string.maketrans('ATCGN', 'TAGCN') |
179 return sequence.upper().translate(complement)[::-1] | 184 return sequence.upper().translate(complement)[::-1] |
180 | 185 |
186 | |
181 def barplot(df, library, axes): | 187 def barplot(df, library, axes): |
182 df.plot(kind='bar', ax=axes, subplots=False,\ | 188 df.plot(kind='bar', ax=axes, subplots=False, |
183 stacked=False, legend='test',\ | 189 stacked=False, legend='test', |
184 title='Mismatch frequencies for {0}'.format(library)) | 190 title='Mismatch frequencies for {0}'.format(library)) |
185 | 191 |
192 | |
186 def df_to_tab(df, output): | 193 def df_to_tab(df, output): |
187 df.to_csv(output, sep='\t') | 194 df.to_csv(output, sep='\t') |
195 | |
188 | 196 |
189 def reduce_result(df, possible_mismatches): | 197 def reduce_result(df, possible_mismatches): |
190 '''takes a pandas dataframe with full mismatch details and | 198 '''takes a pandas dataframe with full mismatch details and |
191 summarises the results for plotting.''' | 199 summarises the results for plotting.''' |
192 alignments = df['Alignment_file'].unique() | 200 alignments = df['Alignment_file'].unique() |
193 readlengths = df['Readlength'].unique() | 201 readlengths = df['Readlength'].unique() |
194 combinations = itertools.product(*[alignments, readlengths]) #generate all possible combinations of readlength and alignment files | 202 combinations = itertools.product(*[alignments, readlengths]) # generate all possible combinations of readlength and alignment files |
195 reduced_dict = {} | 203 reduced_dict = {} |
196 frames = [] | 204 last_column = 3 + len(possible_mismatches) |
197 last_column = 3+len(possible_mismatches) | |
198 for combination in combinations: | 205 for combination in combinations: |
199 library_subset = df[df['Alignment_file'] == combination[0]] | 206 library_subset = df[df['Alignment_file'] == combination[0]] |
200 library_readlength_subset = library_subset[library_subset['Readlength'] == combination[1]] | 207 library_readlength_subset = library_subset[library_subset['Readlength'] == combination[1]] |
201 sum_of_library_and_readlength = library_readlength_subset.iloc[:,3:last_column+1].sum() | 208 sum_of_library_and_readlength = library_readlength_subset.iloc[:, 3:last_column+1].sum() |
202 if not reduced_dict.has_key(combination[0]): | 209 if combination[0] not in reduced_dict: |
203 reduced_dict[combination[0]] = {} | 210 reduced_dict[combination[0]] = {} |
204 reduced_dict[combination[0]][combination[1]] = sum_of_library_and_readlength.to_dict() | 211 reduced_dict[combination[0]][combination[1]] = sum_of_library_and_readlength.to_dict() |
205 return reduced_dict | 212 return reduced_dict |
206 | 213 |
214 | |
207 def plot_result(reduced_dict, args): | 215 def plot_result(reduced_dict, args): |
208 names=reduced_dict.keys() | 216 names = reduced_dict.keys() |
209 nrows=len(names)/2+1 | 217 nrows = len(names) / 2 + 1 |
210 fig = plt.figure(figsize=(16,32)) | 218 fig = plt.figure(figsize=(16, 32)) |
211 for i,library in enumerate (names): | 219 for i, library in enumerate(names): |
212 axes=fig.add_subplot(nrows,2,i+1) | 220 axes = fig.add_subplot(nrows, 2, i+1) |
213 library_dict=reduced_dict[library] | 221 library_dict = reduced_dict[library] |
214 df=pd.DataFrame(library_dict) | 222 df = pd.DataFrame(library_dict) |
215 df.drop(['total aligned reads'], inplace=True) | 223 df.drop(['total aligned reads'], inplace=True) |
216 barplot(df, library, axes), | 224 barplot(df, library, axes), |
217 axes.set_ylabel('Mismatch count / all valid reads * readlength') | 225 axes.set_ylabel('Mismatch count / all valid reads * readlength') |
218 fig.savefig(args.output_pdf, format='pdf') | 226 fig.savefig(args.output_pdf, format='pdf') |
227 | |
219 | 228 |
220 def format_result_dict(result_dict, chromosomes, possible_mismatches): | 229 def format_result_dict(result_dict, chromosomes, possible_mismatches): |
221 '''Turn nested dictionary into preformatted tab seperated lines''' | 230 '''Turn nested dictionary into preformatted tab seperated lines''' |
222 header = "Reference sequence\tAlignment_file\tReadlength\t" + "\t".join( | 231 header = "Reference sequence\tAlignment_file\tReadlength\t" + "\t".join( |
223 possible_mismatches) + "\ttotal aligned reads" | 232 possible_mismatches) + "\ttotal aligned reads" |
235 except KeyError: | 244 except KeyError: |
236 line.extend([0 for mismatch in possible_mismatches]) | 245 line.extend([0 for mismatch in possible_mismatches]) |
237 line.extend([0]) | 246 line.extend([0]) |
238 result.append(line) | 247 result.append(line) |
239 df = pd.DataFrame(result, columns=header.split('\t')) | 248 df = pd.DataFrame(result, columns=header.split('\t')) |
240 last_column=3+len(possible_mismatches) | 249 last_column = 3 + len(possible_mismatches) |
241 df['mismatches/per aligned nucleotides'] = df.iloc[:,3:last_column].sum(1)/(df.iloc[:,last_column]*df['Readlength']) | 250 df['mismatches/per aligned nucleotides'] = df.iloc[:, 3:last_column].sum(1)/(df.iloc[:, last_column] * df['Readlength']) |
242 return df | 251 return df |
243 | 252 |
253 | |
244 def setup_MismatchFrequencies(args): | 254 def setup_MismatchFrequencies(args): |
245 resultDict=OrderedDict() | 255 resultDict = OrderedDict() |
246 kw_list=[{'result_dict' : resultDict, | 256 kw_list = [{'result_dict': resultDict, |
247 'alignment_file' :alignment_file, | 257 'alignment_file': alignment_file, |
248 'name' : name, | 258 'name': name, |
249 'minimal_readlength' : args.min, | 259 'minimal_readlength': args.min, |
250 'maximal_readlength' : args.max, | 260 'maximal_readlength': args.max, |
251 'number_of_allowed_mismatches' : args.n_mm, | 261 'number_of_allowed_mismatches': args.n_mm, |
252 'ignore_5p_nucleotides' : args.five_p, | 262 'ignore_5p_nucleotides': args.five_p, |
253 'ignore_3p_nucleotides' : args.three_p, | 263 'ignore_3p_nucleotides': args.three_p, |
254 'possible_mismatches' : args.possible_mismatches } | 264 'possible_mismatches': args.possible_mismatches} |
255 for alignment_file, name in zip(args.input, args.name)] | 265 for alignment_file, name in zip(args.input, args.name)] |
256 return (kw_list, resultDict) | 266 return (kw_list, resultDict) |
267 | |
257 | 268 |
258 def nested_dict_to_df(dictionary): | 269 def nested_dict_to_df(dictionary): |
259 dictionary = {(outerKey, innerKey): values for outerKey, innerDict in dictionary.iteritems() for innerKey, values in innerDict.iteritems()} | 270 dictionary = {(outerKey, innerKey): values for outerKey, innerDict in dictionary.iteritems() for innerKey, values in innerDict.iteritems()} |
260 df=pd.DataFrame.from_dict(dictionary).transpose() | 271 df = pd.DataFrame.from_dict(dictionary).transpose() |
261 df.index.names = ['Library', 'Readlength'] | 272 df.index.names = ['Library', 'Readlength'] |
262 return df | 273 return df |
263 | 274 |
275 | |
264 def run_MismatchFrequencies(args): | 276 def run_MismatchFrequencies(args): |
265 kw_list, resultDict=setup_MismatchFrequencies(args) | 277 kw_list, resultDict = setup_MismatchFrequencies(args) |
266 references = [MismatchFrequencies(**kw_dict).references for kw_dict in kw_list] | 278 references = [MismatchFrequencies(**kw_dict).references for kw_dict in kw_list] |
267 return (resultDict, references[0]) | 279 return (resultDict, references[0]) |
280 | |
268 | 281 |
269 def main(): | 282 def main(): |
270 result_dict, references = run_MismatchFrequencies(args) | 283 result_dict, references = run_MismatchFrequencies(args) |
271 df = format_result_dict(result_dict, references, args.possible_mismatches) | 284 df = format_result_dict(result_dict, references, args.possible_mismatches) |
272 reduced_dict = reduce_result(df, args.possible_mismatches) | 285 reduced_dict = reduce_result(df, args.possible_mismatches) |
273 plot_result(reduced_dict, args) | 286 plot_result(reduced_dict, args) |
274 reduced_df = nested_dict_to_df(reduced_dict) | 287 reduced_df = nested_dict_to_df(reduced_dict) |
275 df_to_tab(reduced_df, args.output_tab) | 288 df_to_tab(reduced_df, args.output_tab) |
276 if not args.expanded_output_tab == None: | 289 if args.expanded_output_tab: |
277 df_to_tab(df, args.expanded_output_tab) | 290 df_to_tab(df, args.expanded_output_tab) |
278 return reduced_dict | 291 return reduced_dict |
279 | 292 |
280 if __name__ == "__main__": | 293 if __name__ == "__main__": |
281 | 294 |
282 parser = argparse.ArgumentParser(description='Produce mismatch statistics for BAM/SAM alignment files.') | 295 parser = argparse.ArgumentParser(description='Produce mismatch statistics for BAM/SAM alignment files.') |
283 parser.add_argument('--input', nargs='*', help='Input files in SAM/BAM format') | 296 parser.add_argument('--input', nargs='*', help='Input files in SAM/BAM format') |
284 parser.add_argument('--name', nargs='*', help='Name for input file to display in output file. Should have same length as the number of inputs') | 297 parser.add_argument('--name', nargs='*', help='Name for input file to display in output file. Should have same length as the number of inputs') |
285 parser.add_argument('--output_pdf', help='Output filename for graph') | 298 parser.add_argument('--output_pdf', help='Output filename for graph') |
286 parser.add_argument('--output_tab', help='Output filename for table') | 299 parser.add_argument('--output_tab', help='Output filename for table') |
287 parser.add_argument('--expanded_output_tab', default=None, help='Output filename for table') | 300 parser.add_argument('--expanded_output_tab', default=None, help='Output filename for table') |
288 parser.add_argument('--possible_mismatches', default=[ | 301 parser.add_argument('--possible_mismatches', default=[ |
289 'AC', 'AG', 'AT','CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG' | 302 'AC', 'AG', 'AT', 'CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG' |
290 ], nargs='+', help='specify mismatches that should be counted for the mismatch frequency. The format is Reference base -> observed base, eg AG for A to G mismatches.') | 303 ], nargs='+', help='specify mismatches that should be counted for the mismatch frequency. The format is Reference base -> observed base, eg AG for A to G mismatches.') |
291 parser.add_argument('--min', '--minimal_readlength', type=int, help='minimum readlength') | 304 parser.add_argument('--min', '--minimal_readlength', type=int, help='minimum readlength') |
292 parser.add_argument('--max', '--maximal_readlength', type=int, help='maximum readlength') | 305 parser.add_argument('--max', '--maximal_readlength', type=int, help='maximum readlength') |
293 parser.add_argument('--n_mm', '--number_allowed_mismatches', type=int, default=1, help='discard reads with more than n mismatches') | 306 parser.add_argument('--n_mm', '--number_allowed_mismatches', type=int, default=1, help='discard reads with more than n mismatches') |
294 parser.add_argument('--five_p', '--ignore_5p_nucleotides', type=int, default=0, help='when calculating nucleotide mismatch frequencies ignore the first N nucleotides of the read') | 307 parser.add_argument('--five_p', '--ignore_5p_nucleotides', type=int, default=0, help='when calculating nucleotide mismatch frequencies ignore the first N nucleotides of the read') |
295 parser.add_argument('--three_p', '--ignore_3p_nucleotides', type=int, default=1, help='when calculating nucleotide mismatch frequencies ignore the last N nucleotides of the read') | 308 parser.add_argument('--three_p', '--ignore_3p_nucleotides', type=int, default=1, help='when calculating nucleotide mismatch frequencies ignore the last N nucleotides of the read') |
296 #args = parser.parse_args(['--input', '3mismatches_ago2ip_s2.bam', '3mismatches_ago2ip_ovary.bam','--possible_mismatches','AC','AG', 'CG', 'TG', 'CT','--name', 'Siomi1', 'Siomi2' , '--five_p', '3','--three_p','3','--output_pdf', 'out.pdf', '--output_tab', 'out.tab', '--expanded_output_tab', 'expanded.tab', '--min', '20', '--max', '22']) | 309 # args = parser.parse_args(['--input', '3mismatches_ago2ip_s2.bam', '3mismatches_ago2ip_ovary.bam','--possible_mismatches','AC','AG', 'CG', 'TG', 'CT','--name', 'Siomi1', 'Siomi2' , '--five_p', '3','--three_p','3','--output_pdf', 'out.pdf', '--output_tab', 'out.tab', '--expanded_output_tab', 'expanded.tab', '--min', '20', '--max', '22']) |
297 args = parser.parse_args() | 310 args = parser.parse_args() |
298 reduced_dict = main() | 311 reduced_dict = main() |
299 | |
300 |