Mercurial > repos > mvdbeek > mismatch_frequencies
view mismatch_frequencies.py @ 1:3613460e891e draft
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/mismatch_frequencies commit 0beb86e6a562c0dad52afdc0f047b3887ad9ce8e-dirty
author | mvdbeek |
---|---|
date | Wed, 23 Mar 2016 09:59:33 -0400 |
parents | 77de5fc623f9 |
children | 2974c382105c |
line wrap: on
line source
import pysam, re, string import matplotlib.pyplot as plt import pandas as pd import json from collections import defaultdict from collections import OrderedDict import argparse import itertools class MismatchFrequencies: '''Iterate over a SAM/BAM alignment file, collecting reads with mismatches. One class instance per alignment file. The result_dict attribute will contain a nested dictionary with name, readlength and mismatch count.''' def __init__(self, result_dict={}, alignment_file=None, name="name", minimal_readlength=21, maximal_readlength=21, number_of_allowed_mismatches=1, ignore_5p_nucleotides=0, ignore_3p_nucleotides=0, possible_mismatches = [ 'AC', 'AG', 'AT', 'CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG' ]): self.result_dict = result_dict self.name = name self.minimal_readlength = minimal_readlength self.maximal_readlength = maximal_readlength self.number_of_allowed_mismatches = number_of_allowed_mismatches self.ignore_5p_nucleotides = ignore_5p_nucleotides self.ignore_3p_nucleotides = ignore_3p_nucleotides self.possible_mismatches = possible_mismatches if alignment_file: self.pysam_alignment = pysam.Samfile(alignment_file) self.references = self.pysam_alignment.references #names of fasta reference sequences result_dict[name]=self.get_mismatches( self.pysam_alignment, minimal_readlength, maximal_readlength, possible_mismatches ) def get_mismatches(self, pysam_alignment, minimal_readlength, maximal_readlength, possible_mismatches): mismatch_dict = defaultdict(int) rec_dd = lambda: defaultdict(rec_dd) len_dict = rec_dd() for alignedread in pysam_alignment: if self.read_is_valid(alignedread, minimal_readlength, maximal_readlength): chromosome = pysam_alignment.getrname(alignedread.rname) try: len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] += 1 except TypeError: len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] = 1 MD = alignedread.opt('MD') if self.read_has_mismatch(alignedread, self.number_of_allowed_mismatches): (ref_base, mismatch_base)=self.read_to_reference_mismatch(MD, alignedread.seq, alignedread.is_reverse) if ref_base == None: continue else: for i, base in enumerate(ref_base): if not ref_base[i]+mismatch_base[i] in possible_mismatches: continue try: len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] += 1 except TypeError: len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] = 1 return len_dict def read_is_valid(self, read, min_readlength, max_readlength): '''Filter out reads that are unmatched, too short or too long or that contian insertions''' if read.is_unmapped: return False if read.rlen < min_readlength: return False if read.rlen > max_readlength: return False else: return True def read_has_mismatch(self, read, number_of_allowed_mismatches=1): '''keep only reads with one mismatch. Could be simplified''' NM=read.opt('NM') if NM <1: #filter out reads with no mismatch return False if NM >number_of_allowed_mismatches: #filter out reads with more than 1 mismtach return False else: return True def mismatch_in_allowed_region(self, readseq, mismatch_position): ''' >>> M = MismatchFrequencies() >>> readseq = 'AAAAAA' >>> mismatch_position = 2 >>> M.mismatch_in_allowed_region(readseq, mismatch_position) True >>> M = MismatchFrequencies(ignore_3p_nucleotides=2, ignore_5p_nucleotides=2) >>> readseq = 'AAAAAA' >>> mismatch_position = 1 >>> M.mismatch_in_allowed_region(readseq, mismatch_position) False >>> readseq = 'AAAAAA' >>> mismatch_position = 4 >>> M.mismatch_in_allowed_region(readseq, mismatch_position) False ''' mismatch_position+=1 # To compensate for starting the count at 0 five_p = self.ignore_5p_nucleotides three_p = self.ignore_3p_nucleotides if any([five_p > 0, three_p > 0]): if any([mismatch_position <= five_p, mismatch_position >= (len(readseq)+1-three_p)]): #Again compensate for starting the count at 0 return False else: return True else: return True def read_to_reference_mismatch(self, MD, readseq, is_reverse): ''' This is where the magic happens. The MD tag contains SNP and indel information, without looking to the genome sequence. This is a typical MD tag: 3C0G2A6. 3 bases of the read align to the reference, followed by a mismatch, where the reference base is C, followed by 10 bases aligned to the reference. suppose a reference 'CTTCGATAATCCTT' ||| || |||||| and a read 'CTTATATTATCCTT'. This situation is represented by the above MD tag. Given MD tag and read sequence this function returns the reference base C, G and A, and the mismatched base A, T, T. >>> M = MismatchFrequencies() >>> MD='3C0G2A7' >>> seq='CTTATATTATCCTT' >>> result=M.read_to_reference_mismatch(MD, seq, is_reverse=False) >>> result[0]=="CGA" True >>> result[1]=="ATT" True >>> ''' search=re.finditer('[ATGC]',MD) if '^' in MD: print 'WARNING insertion detected, mismatch calling skipped for this read!!!' return (None, None) start_index=0 # refers to the leading integer of the MD string before an edited base current_position=0 # position of the mismatched nucleotide in the MD tag string mismatch_position=0 # position of edited base in current read reference_base="" mismatched_base="" for result in search: current_position=result.start() mismatch_position=mismatch_position+1+int(MD[start_index:current_position]) #converts the leading characters before an edited base into integers start_index=result.end() reference_base+=MD[result.end()-1] mismatched_base+=readseq[mismatch_position-1] if is_reverse: reference_base=reverseComplement(reference_base) mismatched_base=reverseComplement(mismatched_base) mismatch_position=len(readseq)-mismatch_position-1 if mismatched_base=='N': return (None, None) if self.mismatch_in_allowed_region(readseq, mismatch_position): return (reference_base, mismatched_base) else: return (None, None) def reverseComplement(sequence): '''do a reverse complement of DNA base. >>> reverseComplement('ATGC')=='GCAT' True >>> ''' sequence=sequence.upper() complement = string.maketrans('ATCGN', 'TAGCN') return sequence.upper().translate(complement)[::-1] def barplot(df, library, axes): df.plot(kind='bar', ax=axes, subplots=False,\ stacked=False, legend='test',\ title='Mismatch frequencies for {0}'.format(library)) def df_to_tab(df, output): df.to_csv(output, sep='\t') def reduce_result(df, possible_mismatches): '''takes a pandas dataframe with full mismatch details and summarises the results for plotting.''' alignments = df['Alignment_file'].unique() readlengths = df['Readlength'].unique() combinations = itertools.product(*[alignments, readlengths]) #generate all possible combinations of readlength and alignment files reduced_dict = {} frames = [] last_column = 3+len(possible_mismatches) for combination in combinations: library_subset = df[df['Alignment_file'] == combination[0]] library_readlength_subset = library_subset[library_subset['Readlength'] == combination[1]] sum_of_library_and_readlength = library_readlength_subset.iloc[:,3:last_column+1].sum() if not reduced_dict.has_key(combination[0]): reduced_dict[combination[0]] = {} reduced_dict[combination[0]][combination[1]] = sum_of_library_and_readlength.to_dict() return reduced_dict def plot_result(reduced_dict, args): names=reduced_dict.keys() nrows=len(names)/2+1 fig = plt.figure(figsize=(16,32)) for i,library in enumerate (names): axes=fig.add_subplot(nrows,2,i+1) library_dict=reduced_dict[library] df=pd.DataFrame(library_dict) df.drop(['total aligned reads'], inplace=True) barplot(df, library, axes), axes.set_ylabel('Mismatch count / all valid reads * readlength') fig.savefig(args.output_pdf, format='pdf') def format_result_dict(result_dict, chromosomes, possible_mismatches): '''Turn nested dictionary into preformatted tab seperated lines''' header = "Reference sequence\tAlignment_file\tReadlength\t" + "\t".join( possible_mismatches) + "\ttotal aligned reads" libraries = result_dict.keys() readlengths = result_dict[libraries[0]].keys() result = [] for chromosome in chromosomes: for library in libraries: for readlength in readlengths: line = [] line.extend([chromosome, library, readlength]) try: line.extend([result_dict[library][readlength][chromosome].get(mismatch, 0) for mismatch in possible_mismatches]) line.extend([result_dict[library][readlength][chromosome].get(u'total valid reads', 0)]) except KeyError: line.extend([0 for mismatch in possible_mismatches]) line.extend([0]) result.append(line) df = pd.DataFrame(result, columns=header.split('\t')) last_column=3+len(possible_mismatches) df['mismatches/per aligned nucleotides'] = df.iloc[:,3:last_column].sum(1)/(df.iloc[:,last_column]*df['Readlength']) return df def setup_MismatchFrequencies(args): resultDict=OrderedDict() kw_list=[{'result_dict' : resultDict, 'alignment_file' :alignment_file, 'name' : name, 'minimal_readlength' : args.min, 'maximal_readlength' : args.max, 'number_of_allowed_mismatches' : args.n_mm, 'ignore_5p_nucleotides' : args.five_p, 'ignore_3p_nucleotides' : args.three_p, 'possible_mismatches' : args.possible_mismatches } for alignment_file, name in zip(args.input, args.name)] return (kw_list, resultDict) def nested_dict_to_df(dictionary): dictionary = {(outerKey, innerKey): values for outerKey, innerDict in dictionary.iteritems() for innerKey, values in innerDict.iteritems()} df=pd.DataFrame.from_dict(dictionary).transpose() df.index.names = ['Library', 'Readlength'] return df def run_MismatchFrequencies(args): kw_list, resultDict=setup_MismatchFrequencies(args) references = [MismatchFrequencies(**kw_dict).references for kw_dict in kw_list] return (resultDict, references[0]) def main(): result_dict, references = run_MismatchFrequencies(args) df = format_result_dict(result_dict, references, args.possible_mismatches) reduced_dict = reduce_result(df, args.possible_mismatches) plot_result(reduced_dict, args) reduced_df = nested_dict_to_df(reduced_dict) df_to_tab(reduced_df, args.output_tab) if not args.expanded_output_tab == None: df_to_tab(df, args.expanded_output_tab) return reduced_dict if __name__ == "__main__": parser = argparse.ArgumentParser(description='Produce mismatch statistics for BAM/SAM alignment files.') parser.add_argument('--input', nargs='*', help='Input files in SAM/BAM format') parser.add_argument('--name', nargs='*', help='Name for input file to display in output file. Should have same length as the number of inputs') parser.add_argument('--output_pdf', help='Output filename for graph') parser.add_argument('--output_tab', help='Output filename for table') parser.add_argument('--expanded_output_tab', default=None, help='Output filename for table') parser.add_argument('--possible_mismatches', default=[ 'AC', 'AG', 'AT','CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG' ], nargs='+', help='specify mismatches that should be counted for the mismatch frequency. The format is Reference base -> observed base, eg AG for A to G mismatches.') parser.add_argument('--min', '--minimal_readlength', type=int, help='minimum readlength') parser.add_argument('--max', '--maximal_readlength', type=int, help='maximum readlength') parser.add_argument('--n_mm', '--number_allowed_mismatches', type=int, default=1, help='discard reads with more than n mismatches') parser.add_argument('--five_p', '--ignore_5p_nucleotides', type=int, default=0, help='when calculating nucleotide mismatch frequencies ignore the first N nucleotides of the read') parser.add_argument('--three_p', '--ignore_3p_nucleotides', type=int, default=1, help='when calculating nucleotide mismatch frequencies ignore the last N nucleotides of the read') #args = parser.parse_args(['--input', '3mismatches_ago2ip_s2.bam', '3mismatches_ago2ip_ovary.bam','--possible_mismatches','AC','AG', 'CG', 'TG', 'CT','--name', 'Siomi1', 'Siomi2' , '--five_p', '3','--three_p','3','--output_pdf', 'out.pdf', '--output_tab', 'out.tab', '--expanded_output_tab', 'expanded.tab', '--min', '20', '--max', '22']) args = parser.parse_args() reduced_dict = main()