Mercurial > repos > mvdbeek > mismatch_frequencies
changeset 0:77de5fc623f9 draft
planemo upload for repository https://bitbucket.org/drosofff/gedtools/
author | mvdbeek |
---|---|
date | Wed, 27 May 2015 13:40:23 -0400 |
parents | |
children | 3613460e891e |
files | mismatch_frequencies.py mismatch_frequencies.xml test-data/3mismatches_ago2ip_ovary.bam test-data/3mismatches_ago2ip_s2.bam test-data/mismatch.pdf test-data/mismatch.tab tool_dependencies.xml |
diffstat | 7 files changed, 404 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mismatch_frequencies.py Wed May 27 13:40:23 2015 -0400 @@ -0,0 +1,300 @@ +import pysam, re, string +import matplotlib.pyplot as plt +import pandas as pd +import json +from collections import defaultdict +from collections import OrderedDict +import argparse +import itertools + +class MismatchFrequencies: + '''Iterate over a SAM/BAM alignment file, collecting reads with mismatches. One + class instance per alignment file. The result_dict attribute will contain a + nested dictionary with name, readlength and mismatch count.''' + def __init__(self, result_dict={}, alignment_file=None, name="name", minimal_readlength=21, + maximal_readlength=21, + number_of_allowed_mismatches=1, + ignore_5p_nucleotides=0, + ignore_3p_nucleotides=0, + possible_mismatches = [ + 'AC', 'AG', 'AT', + 'CA', 'CG', 'CT', + 'GA', 'GC', 'GT', + 'TA', 'TC', 'TG' + ]): + + self.result_dict = result_dict + self.name = name + self.minimal_readlength = minimal_readlength + self.maximal_readlength = maximal_readlength + self.number_of_allowed_mismatches = number_of_allowed_mismatches + self.ignore_5p_nucleotides = ignore_5p_nucleotides + self.ignore_3p_nucleotides = ignore_3p_nucleotides + self.possible_mismatches = possible_mismatches + + if alignment_file: + self.pysam_alignment = pysam.Samfile(alignment_file) + self.references = self.pysam_alignment.references #names of fasta reference sequences + result_dict[name]=self.get_mismatches( + self.pysam_alignment, + minimal_readlength, + maximal_readlength, + possible_mismatches + ) + + def get_mismatches(self, pysam_alignment, minimal_readlength, + maximal_readlength, possible_mismatches): + mismatch_dict = defaultdict(int) + rec_dd = lambda: defaultdict(rec_dd) + len_dict = rec_dd() + for alignedread in pysam_alignment: + if self.read_is_valid(alignedread, minimal_readlength, maximal_readlength): + chromosome = pysam_alignment.getrname(alignedread.rname) + try: + len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] += 1 + except TypeError: + len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] = 1 + MD = alignedread.opt('MD') + if self.read_has_mismatch(alignedread, self.number_of_allowed_mismatches): + (ref_base, mismatch_base)=self.read_to_reference_mismatch(MD, alignedread.seq, alignedread.is_reverse) + if ref_base == None: + continue + else: + for i, base in enumerate(ref_base): + if not ref_base[i]+mismatch_base[i] in possible_mismatches: + continue + try: + len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] += 1 + except TypeError: + len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] = 1 + return len_dict + + def read_is_valid(self, read, min_readlength, max_readlength): + '''Filter out reads that are unmatched, too short or + too long or that contian insertions''' + if read.is_unmapped: + return False + if read.rlen < min_readlength: + return False + if read.rlen > max_readlength: + return False + else: + return True + + def read_has_mismatch(self, read, number_of_allowed_mismatches=1): + '''keep only reads with one mismatch. Could be simplified''' + NM=read.opt('NM') + if NM <1: #filter out reads with no mismatch + return False + if NM >number_of_allowed_mismatches: #filter out reads with more than 1 mismtach + return False + else: + return True + + def mismatch_in_allowed_region(self, readseq, mismatch_position): + ''' + >>> M = MismatchFrequencies() + >>> readseq = 'AAAAAA' + >>> mismatch_position = 2 + >>> M.mismatch_in_allowed_region(readseq, mismatch_position) + True + >>> M = MismatchFrequencies(ignore_3p_nucleotides=2, ignore_5p_nucleotides=2) + >>> readseq = 'AAAAAA' + >>> mismatch_position = 1 + >>> M.mismatch_in_allowed_region(readseq, mismatch_position) + False + >>> readseq = 'AAAAAA' + >>> mismatch_position = 4 + >>> M.mismatch_in_allowed_region(readseq, mismatch_position) + False + ''' + mismatch_position+=1 # To compensate for starting the count at 0 + five_p = self.ignore_5p_nucleotides + three_p = self.ignore_3p_nucleotides + if any([five_p > 0, three_p > 0]): + if any([mismatch_position <= five_p, + mismatch_position >= (len(readseq)+1-three_p)]): #Again compensate for starting the count at 0 + return False + else: + return True + else: + return True + + def read_to_reference_mismatch(self, MD, readseq, is_reverse): + ''' + This is where the magic happens. The MD tag contains SNP and indel information, + without looking to the genome sequence. This is a typical MD tag: 3C0G2A6. + 3 bases of the read align to the reference, followed by a mismatch, where the + reference base is C, followed by 10 bases aligned to the reference. + suppose a reference 'CTTCGATAATCCTT' + ||| || |||||| + and a read 'CTTATATTATCCTT'. + This situation is represented by the above MD tag. + Given MD tag and read sequence this function returns the reference base C, G and A, + and the mismatched base A, T, T. + >>> M = MismatchFrequencies() + >>> MD='3C0G2A7' + >>> seq='CTTATATTATCCTT' + >>> result=M.read_to_reference_mismatch(MD, seq, is_reverse=False) + >>> result[0]=="CGA" + True + >>> result[1]=="ATT" + True + >>> + ''' + search=re.finditer('[ATGC]',MD) + if '^' in MD: + print 'WARNING insertion detected, mismatch calling skipped for this read!!!' + return (None, None) + start_index=0 # refers to the leading integer of the MD string before an edited base + current_position=0 # position of the mismatched nucleotide in the MD tag string + mismatch_position=0 # position of edited base in current read + reference_base="" + mismatched_base="" + for result in search: + current_position=result.start() + mismatch_position=mismatch_position+1+int(MD[start_index:current_position]) #converts the leading characters before an edited base into integers + start_index=result.end() + reference_base+=MD[result.end()-1] + mismatched_base+=readseq[mismatch_position-1] + if is_reverse: + reference_base=reverseComplement(reference_base) + mismatched_base=reverseComplement(mismatched_base) + mismatch_position=len(readseq)-mismatch_position-1 + if mismatched_base=='N': + return (None, None) + if self.mismatch_in_allowed_region(readseq, mismatch_position): + return (reference_base, mismatched_base) + else: + return (None, None) + +def reverseComplement(sequence): + '''do a reverse complement of DNA base. + >>> reverseComplement('ATGC')=='GCAT' + True + >>> + ''' + sequence=sequence.upper() + complement = string.maketrans('ATCGN', 'TAGCN') + return sequence.upper().translate(complement)[::-1] + +def barplot(df, library, axes): + df.plot(kind='bar', ax=axes, subplots=False,\ + stacked=False, legend='test',\ + title='Mismatch frequencies for {0}'.format(library)) + +def df_to_tab(df, output): + df.to_csv(output, sep='\t') + +def reduce_result(df, possible_mismatches): + '''takes a pandas dataframe with full mismatch details and + summarises the results for plotting.''' + alignments = df['Alignment_file'].unique() + readlengths = df['Readlength'].unique() + combinations = itertools.product(*[alignments, readlengths]) #generate all possible combinations of readlength and alignment files + reduced_dict = {} + frames = [] + last_column = 3+len(possible_mismatches) + for combination in combinations: + library_subset = df[df['Alignment_file'] == combination[0]] + library_readlength_subset = library_subset[library_subset['Readlength'] == combination[1]] + sum_of_library_and_readlength = library_readlength_subset.iloc[:,3:last_column+1].sum() + if not reduced_dict.has_key(combination[0]): + reduced_dict[combination[0]] = {} + reduced_dict[combination[0]][combination[1]] = sum_of_library_and_readlength.to_dict() + return reduced_dict + +def plot_result(reduced_dict, args): + names=reduced_dict.keys() + nrows=len(names)/2+1 + fig = plt.figure(figsize=(16,32)) + for i,library in enumerate (names): + axes=fig.add_subplot(nrows,2,i+1) + library_dict=reduced_dict[library] + df=pd.DataFrame(library_dict) + df.drop(['total aligned reads'], inplace=True) + barplot(df, library, axes), + axes.set_ylabel('Mismatch count / all valid reads * readlength') + fig.savefig(args.output_pdf, format='pdf') + +def format_result_dict(result_dict, chromosomes, possible_mismatches): + '''Turn nested dictionary into preformatted tab seperated lines''' + header = "Reference sequence\tAlignment_file\tReadlength\t" + "\t".join( + possible_mismatches) + "\ttotal aligned reads" + libraries = result_dict.keys() + readlengths = result_dict[libraries[0]].keys() + result = [] + for chromosome in chromosomes: + for library in libraries: + for readlength in readlengths: + line = [] + line.extend([chromosome, library, readlength]) + try: + line.extend([result_dict[library][readlength][chromosome].get(mismatch, 0) for mismatch in possible_mismatches]) + line.extend([result_dict[library][readlength][chromosome].get(u'total valid reads', 0)]) + except KeyError: + line.extend([0 for mismatch in possible_mismatches]) + line.extend([0]) + result.append(line) + df = pd.DataFrame(result, columns=header.split('\t')) + last_column=3+len(possible_mismatches) + df['mismatches/per aligned nucleotides'] = df.iloc[:,3:last_column].sum(1)/(df.iloc[:,last_column]*df['Readlength']) + return df + +def setup_MismatchFrequencies(args): + resultDict=OrderedDict() + kw_list=[{'result_dict' : resultDict, + 'alignment_file' :alignment_file, + 'name' : name, + 'minimal_readlength' : args.min, + 'maximal_readlength' : args.max, + 'number_of_allowed_mismatches' : args.n_mm, + 'ignore_5p_nucleotides' : args.five_p, + 'ignore_3p_nucleotides' : args.three_p, + 'possible_mismatches' : args.possible_mismatches } + for alignment_file, name in zip(args.input, args.name)] + return (kw_list, resultDict) + +def nested_dict_to_df(dictionary): + dictionary = {(outerKey, innerKey): values for outerKey, innerDict in dictionary.iteritems() for innerKey, values in innerDict.iteritems()} + df=pd.DataFrame.from_dict(dictionary).transpose() + df.index.names = ['Library', 'Readlength'] + return df + +def run_MismatchFrequencies(args): + kw_list, resultDict=setup_MismatchFrequencies(args) + references = [MismatchFrequencies(**kw_dict).references for kw_dict in kw_list] + return (resultDict, references[0]) + +def main(): + result_dict, references = run_MismatchFrequencies(args) + df = format_result_dict(result_dict, references, args.possible_mismatches) + reduced_dict = reduce_result(df, args.possible_mismatches) + plot_result(reduced_dict, args) + reduced_df = nested_dict_to_df(reduced_dict) + df_to_tab(reduced_df, args.output_tab) + if not args.expanded_output_tab == None: + df_to_tab(df, args.expanded_output_tab) + return reduced_dict + +if __name__ == "__main__": + + parser = argparse.ArgumentParser(description='Produce mismatch statistics for BAM/SAM alignment files.') + parser.add_argument('--input', nargs='*', help='Input files in SAM/BAM format') + parser.add_argument('--name', nargs='*', help='Name for input file to display in output file. Should have same length as the number of inputs') + parser.add_argument('--output_pdf', help='Output filename for graph') + parser.add_argument('--output_tab', help='Output filename for table') + parser.add_argument('--expanded_output_tab', default=None, help='Output filename for table') + parser.add_argument('--possible_mismatches', default=[ + 'AC', 'AG', 'AT','CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG' + ], nargs='+', help='specify mismatches that should be counted for the mismatch frequency. The format is Reference base -> observed base, eg AG for A to G mismatches.') + parser.add_argument('--min', '--minimal_readlength', type=int, help='minimum readlength') + parser.add_argument('--max', '--maximal_readlength', type=int, help='maximum readlength') + parser.add_argument('--n_mm', '--number_allowed_mismatches', type=int, default=1, help='discard reads with more than n mismatches') + parser.add_argument('--five_p', '--ignore_5p_nucleotides', type=int, default=0, help='when calculating nucleotide mismatch frequencies ignore the first N nucleotides of the read') + parser.add_argument('--three_p', '--ignore_3p_nucleotides', type=int, default=1, help='when calculating nucleotide mismatch frequencies ignore the last N nucleotides of the read') + #args = parser.parse_args(['--input', '3mismatches_ago2ip_s2.bam', '3mismatches_ago2ip_ovary.bam','--possible_mismatches','AC','AG', 'CG', 'TG', 'CT','--name', 'Siomi1', 'Siomi2' , '--five_p', '3','--three_p','3','--output_pdf', 'out.pdf', '--output_tab', 'out.tab', '--expanded_output_tab', 'expanded.tab', '--min', '20', '--max', '22']) + args = parser.parse_args() + reduced_dict = main() + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mismatch_frequencies.xml Wed May 27 13:40:23 2015 -0400 @@ -0,0 +1,89 @@ +<tool id="mismatch_frequencies" name="Mismatch Frequencies" version="0.0.9" hidden="false" > + <description>Analyze mismatch frequencies in BAM/SAM alignments</description> + <requirements> + <requirement type="package" version="0.7.7">pysam</requirement> + <requirement type="package" version="0.14.1">pandas</requirement> + <requirement type="package" version="1.2.1">matplotlib</requirement> + </requirements> + <command interpreter="python">mismatch_frequencies.py --input + #for i in $rep + "$i.input_file" + #end for + --name + #for i in $rep + "$i.input_file.name" + #end for + --output_pdf $output_pdf --output_tab $output_tab --min $min_length --max $max_length + --n_mm $number_of_mismatches + --five_p $five_p + --three_p $three_p + --expanded_output_tab $expanded_tab + --possible_mismatches $possible_mismatches + </command> + <inputs> + <repeat name="rep" title="alignment files"> + <param name="input_file" type="data" format="bam,sam" label="Alignment file" help="The input alignment file(s) for which to analyze the mismatches."/> + </repeat> + <param name="number_of_mismatches" label="Maximum number of allowed mismatches per read" help="Discard reads with more than the chosen number of mismatches from the frequency calculation" type="integer" value="3"/> + <param name="possible_mismatches" label="Specify mismatches that should be counted" help="Ignores mismatches that are not listed" type="text" value="AC AG AT CA CG CT GA GC GT TA TC TG"> + <validator type="expression" message="Allowed values are AGCTN, seperated by space.">len([False for char in value if not char in " AGCTN"]) == 0</validator> + </param> + <param name="min_length" label="Minumum read length to analyse" type="integer" value="21"/> + <param name="max_length" label="Maximum read length to analyse" type="integer" value="21"/> + <param name="five_p" label="Ignore mismatches in the first N nucleotides of a read" type="integer" value="0"/> + <param name="three_p" label="Ignore mismatches in the last N nucleotides of a read" help="useful to discriminate between tailing events and editing events" type="integer" value="3"/> + <param help="Output expanded tabular format" label="Nucleotide mismatches per reference sequence" name="expanded" type="select"> + <option select="true" value="false">No</option> + <option value="expanded">Yes</option> + </param> + </inputs> + <outputs> + <data format="tabular" name="output_tab" /> + <data format="tabular" name="expanded_tab"> + <filter> expanded == "expanded"</filter> + </data> + <data format="pdf" name="output_pdf" /> + </outputs> + <tests> + <test> + <param name="rep_0|input_file" value="3mismatches_ago2ip_s2.bam" ftype="bam" /> + <param name="rep_1|input_file" value="3mismatches_ago2ip_ovary.bam" ftype="bam" /> + <param name="number_of_mismatches" value="1" /> + <param name="min_length" value="21" /> + <param name="max_length" value="21" /> + <param name="three_p" value="0" /> + <param name="five_p" value="0" /> + <output name="tabular" file="mismatch.tab" ftype="tabular"/> + <!-- + <output name="pdf" file="mismatch.pdf" ftype="pdf"/> + --> + </test> + </tests> + <help> + +.. class:: infomark + + +***What it does*** + +This tool reconstitues for each aligned read of an alignment file in SAM/BAM format whether +a mismatch is annotated in the MD tag, and if that is the case counts the identity of the +mismatch relative to the reference sequence. The output is a PDF document with the calculated +frequency for each mismatch that occured relative to the total number of valid reads and a table +with the corresponding values. Read length can be limited to a specific read length, and 5 prime and +3 prime-most nucleotides of a read can be ignored. + +---- + +.. class:: warningmark + +***Warning*** + +This tool skips all read that have insertions and has been tested only with bowtie and bowtie2 +generated alignment files. + +Written by Marius van den Beek, m.vandenbeek at gmail . com + </help> + <citations> + </citations> +</tool>
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/mismatch.tab Wed May 27 13:40:23 2015 -0400 @@ -0,0 +1,3 @@ +Library Readlength AC AG AT CA CG CT GA GC GT TA TC TG total aligned reads +3mismatches_ago2ip_ovary.bam 21 380 1214 524 581 278 1127 1032 239 595 483 973 394 138649 +3mismatches_ago2ip_s2.bam 21 48 6503 106 68 46 173 222 144 220 90 232 40 43881
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tool_dependencies.xml Wed May 27 13:40:23 2015 -0400 @@ -0,0 +1,12 @@ +<?xml version="1.0"?> +<tool_dependency> + <package name="pysam" version="0.7.7"> + <repository changeset_revision="b62538c8c664" name="package_pysam_0_7_7" owner="iuc" toolshed="https://toolshed.g2.bx.psu.edu" /> + </package> + <package name="pandas" version="0.14.1"> + <repository changeset_revision="18e65cea168d" name="package_pandas_0_14" owner="iuc" toolshed="https://toolshed.g2.bx.psu.edu" /> + </package> + <package name="matplotlib" version="1.2.1"> + <repository changeset_revision="a03ee94316b5" name="package_matplotlib_1_2" owner="iuc" toolshed="https://toolshed.g2.bx.psu.edu" /> + </package> +</tool_dependency>