Mercurial > repos > mvdbeek > mismatch_frequencies
changeset 2:2974c382105c draft default tip
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/mismatch_frequencies commit 10a7e3877c2568d9c23de53fc97dc1c902ff0524-dirty
author | mvdbeek |
---|---|
date | Sat, 22 Dec 2018 04:15:47 -0500 |
parents | 3613460e891e |
children | |
files | mismatch_frequencies.py mismatch_frequencies.xml tool_dependencies.xml |
diffstat | 3 files changed, 129 insertions(+), 125 deletions(-) [+] |
line wrap: on
line diff
--- a/mismatch_frequencies.py Wed Mar 23 09:59:33 2016 -0400 +++ b/mismatch_frequencies.py Sat Dec 22 04:15:47 2018 -0500 @@ -1,28 +1,33 @@ -import pysam, re, string -import matplotlib.pyplot as plt +import re +import string +import pysam +import matplotlib import pandas as pd -import json from collections import defaultdict from collections import OrderedDict import argparse import itertools +matplotlib.use('pdf') +import matplotlib.pyplot as plt # noqa: E402 + + class MismatchFrequencies: '''Iterate over a SAM/BAM alignment file, collecting reads with mismatches. One class instance per alignment file. The result_dict attribute will contain a nested dictionary with name, readlength and mismatch count.''' - def __init__(self, result_dict={}, alignment_file=None, name="name", minimal_readlength=21, + def __init__(self, result_dict={}, alignment_file=None, name="name", minimal_readlength=21, maximal_readlength=21, - number_of_allowed_mismatches=1, - ignore_5p_nucleotides=0, + number_of_allowed_mismatches=1, + ignore_5p_nucleotides=0, ignore_3p_nucleotides=0, - possible_mismatches = [ + possible_mismatches=[ 'AC', 'AG', 'AT', 'CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG' ]): - + self.result_dict = result_dict self.name = name self.minimal_readlength = minimal_readlength @@ -31,20 +36,19 @@ self.ignore_5p_nucleotides = ignore_5p_nucleotides self.ignore_3p_nucleotides = ignore_3p_nucleotides self.possible_mismatches = possible_mismatches - + if alignment_file: self.pysam_alignment = pysam.Samfile(alignment_file) - self.references = self.pysam_alignment.references #names of fasta reference sequences - result_dict[name]=self.get_mismatches( - self.pysam_alignment, - minimal_readlength, + self.references = self.pysam_alignment.references # names of fasta reference sequences + result_dict[name] = self.get_mismatches( + self.pysam_alignment, + minimal_readlength, maximal_readlength, possible_mismatches ) - - def get_mismatches(self, pysam_alignment, minimal_readlength, + + def get_mismatches(self, pysam_alignment, minimal_readlength, maximal_readlength, possible_mismatches): - mismatch_dict = defaultdict(int) rec_dd = lambda: defaultdict(rec_dd) len_dict = rec_dd() for alignedread in pysam_alignment: @@ -56,8 +60,8 @@ len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] = 1 MD = alignedread.opt('MD') if self.read_has_mismatch(alignedread, self.number_of_allowed_mismatches): - (ref_base, mismatch_base)=self.read_to_reference_mismatch(MD, alignedread.seq, alignedread.is_reverse) - if ref_base == None: + (ref_base, mismatch_base) = self.read_to_reference_mismatch(MD, alignedread.seq, alignedread.is_reverse) + if not ref_base: continue else: for i, base in enumerate(ref_base): @@ -68,7 +72,7 @@ except TypeError: len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] = 1 return len_dict - + def read_is_valid(self, read, min_readlength, max_readlength): '''Filter out reads that are unmatched, too short or too long or that contian insertions''' @@ -80,17 +84,17 @@ return False else: return True - + def read_has_mismatch(self, read, number_of_allowed_mismatches=1): '''keep only reads with one mismatch. Could be simplified''' - NM=read.opt('NM') - if NM <1: #filter out reads with no mismatch + NM = read.opt('NM') + if NM < 1: # filter out reads with no mismatch return False - if NM >number_of_allowed_mismatches: #filter out reads with more than 1 mismtach + if NM > number_of_allowed_mismatches: # filter out reads with more than 1 mismtach return False else: return True - + def mismatch_in_allowed_region(self, readseq, mismatch_position): ''' >>> M = MismatchFrequencies() @@ -108,29 +112,29 @@ >>> M.mismatch_in_allowed_region(readseq, mismatch_position) False ''' - mismatch_position+=1 # To compensate for starting the count at 0 + mismatch_position += 1 # To compensate for starting the count at 0 five_p = self.ignore_5p_nucleotides three_p = self.ignore_3p_nucleotides if any([five_p > 0, three_p > 0]): - if any([mismatch_position <= five_p, - mismatch_position >= (len(readseq)+1-three_p)]): #Again compensate for starting the count at 0 + if any([mismatch_position <= five_p, + mismatch_position >= (len(readseq) + 1 - three_p)]): # Again compensate for starting the count at 0 return False else: return True else: return True - + def read_to_reference_mismatch(self, MD, readseq, is_reverse): ''' This is where the magic happens. The MD tag contains SNP and indel information, without looking to the genome sequence. This is a typical MD tag: 3C0G2A6. 3 bases of the read align to the reference, followed by a mismatch, where the - reference base is C, followed by 10 bases aligned to the reference. + reference base is C, followed by 10 bases aligned to the reference. suppose a reference 'CTTCGATAATCCTT' ||| || |||||| - and a read 'CTTATATTATCCTT'. - This situation is represented by the above MD tag. - Given MD tag and read sequence this function returns the reference base C, G and A, + and a read 'CTTATATTATCCTT'. + This situation is represented by the above MD tag. + Given MD tag and read sequence this function returns the reference base C, G and A, and the mismatched base A, T, T. >>> M = MismatchFrequencies() >>> MD='3C0G2A7' @@ -140,82 +144,87 @@ True >>> result[1]=="ATT" True - >>> + >>> ''' - search=re.finditer('[ATGC]',MD) + search = re.finditer('[ATGC]', MD) if '^' in MD: print 'WARNING insertion detected, mismatch calling skipped for this read!!!' return (None, None) - start_index=0 # refers to the leading integer of the MD string before an edited base - current_position=0 # position of the mismatched nucleotide in the MD tag string - mismatch_position=0 # position of edited base in current read - reference_base="" - mismatched_base="" + start_index = 0 # refers to the leading integer of the MD string before an edited base + current_position = 0 # position of the mismatched nucleotide in the MD tag string + mismatch_position = 0 # position of edited base in current read + reference_base = "" + mismatched_base = "" for result in search: - current_position=result.start() - mismatch_position=mismatch_position+1+int(MD[start_index:current_position]) #converts the leading characters before an edited base into integers - start_index=result.end() - reference_base+=MD[result.end()-1] - mismatched_base+=readseq[mismatch_position-1] + current_position = result.start() + mismatch_position = mismatch_position + 1 + int(MD[start_index:current_position]) # converts the leading characters before an edited base into integers + start_index = result.end() + reference_base += MD[result.end() - 1] + mismatched_base += readseq[mismatch_position - 1] if is_reverse: - reference_base=reverseComplement(reference_base) - mismatched_base=reverseComplement(mismatched_base) - mismatch_position=len(readseq)-mismatch_position-1 - if mismatched_base=='N': + reference_base = reverseComplement(reference_base) + mismatched_base = reverseComplement(mismatched_base) + mismatch_position = len(readseq)-mismatch_position-1 + if mismatched_base == 'N': return (None, None) if self.mismatch_in_allowed_region(readseq, mismatch_position): return (reference_base, mismatched_base) else: return (None, None) + def reverseComplement(sequence): '''do a reverse complement of DNA base. >>> reverseComplement('ATGC')=='GCAT' True - >>> + >>> ''' - sequence=sequence.upper() + sequence = sequence.upper() complement = string.maketrans('ATCGN', 'TAGCN') return sequence.upper().translate(complement)[::-1] + def barplot(df, library, axes): - df.plot(kind='bar', ax=axes, subplots=False,\ - stacked=False, legend='test',\ + df.plot(kind='bar', ax=axes, subplots=False, + stacked=False, legend='test', title='Mismatch frequencies for {0}'.format(library)) - + + def df_to_tab(df, output): df.to_csv(output, sep='\t') + def reduce_result(df, possible_mismatches): '''takes a pandas dataframe with full mismatch details and summarises the results for plotting.''' alignments = df['Alignment_file'].unique() readlengths = df['Readlength'].unique() - combinations = itertools.product(*[alignments, readlengths]) #generate all possible combinations of readlength and alignment files + combinations = itertools.product(*[alignments, readlengths]) # generate all possible combinations of readlength and alignment files reduced_dict = {} - frames = [] - last_column = 3+len(possible_mismatches) + last_column = 3 + len(possible_mismatches) for combination in combinations: library_subset = df[df['Alignment_file'] == combination[0]] library_readlength_subset = library_subset[library_subset['Readlength'] == combination[1]] - sum_of_library_and_readlength = library_readlength_subset.iloc[:,3:last_column+1].sum() - if not reduced_dict.has_key(combination[0]): + sum_of_library_and_readlength = library_readlength_subset.iloc[:, 3:last_column+1].sum() + if combination[0] not in reduced_dict: reduced_dict[combination[0]] = {} reduced_dict[combination[0]][combination[1]] = sum_of_library_and_readlength.to_dict() return reduced_dict + def plot_result(reduced_dict, args): - names=reduced_dict.keys() - nrows=len(names)/2+1 - fig = plt.figure(figsize=(16,32)) - for i,library in enumerate (names): - axes=fig.add_subplot(nrows,2,i+1) - library_dict=reduced_dict[library] - df=pd.DataFrame(library_dict) + names = reduced_dict.keys() + nrows = len(names) / 2 + 1 + fig = plt.figure(figsize=(16, 32)) + for i, library in enumerate(names): + axes = fig.add_subplot(nrows, 2, i+1) + library_dict = reduced_dict[library] + df = pd.DataFrame(library_dict) df.drop(['total aligned reads'], inplace=True) barplot(df, library, axes), axes.set_ylabel('Mismatch count / all valid reads * readlength') - fig.savefig(args.output_pdf, format='pdf') + fig.savefig(args.output_pdf, format='pdf') + def format_result_dict(result_dict, chromosomes, possible_mismatches): '''Turn nested dictionary into preformatted tab seperated lines''' @@ -237,35 +246,39 @@ line.extend([0]) result.append(line) df = pd.DataFrame(result, columns=header.split('\t')) - last_column=3+len(possible_mismatches) - df['mismatches/per aligned nucleotides'] = df.iloc[:,3:last_column].sum(1)/(df.iloc[:,last_column]*df['Readlength']) + last_column = 3 + len(possible_mismatches) + df['mismatches/per aligned nucleotides'] = df.iloc[:, 3:last_column].sum(1)/(df.iloc[:, last_column] * df['Readlength']) return df - + + def setup_MismatchFrequencies(args): - resultDict=OrderedDict() - kw_list=[{'result_dict' : resultDict, - 'alignment_file' :alignment_file, - 'name' : name, - 'minimal_readlength' : args.min, - 'maximal_readlength' : args.max, - 'number_of_allowed_mismatches' : args.n_mm, - 'ignore_5p_nucleotides' : args.five_p, - 'ignore_3p_nucleotides' : args.three_p, - 'possible_mismatches' : args.possible_mismatches } - for alignment_file, name in zip(args.input, args.name)] + resultDict = OrderedDict() + kw_list = [{'result_dict': resultDict, + 'alignment_file': alignment_file, + 'name': name, + 'minimal_readlength': args.min, + 'maximal_readlength': args.max, + 'number_of_allowed_mismatches': args.n_mm, + 'ignore_5p_nucleotides': args.five_p, + 'ignore_3p_nucleotides': args.three_p, + 'possible_mismatches': args.possible_mismatches} + for alignment_file, name in zip(args.input, args.name)] return (kw_list, resultDict) + def nested_dict_to_df(dictionary): dictionary = {(outerKey, innerKey): values for outerKey, innerDict in dictionary.iteritems() for innerKey, values in innerDict.iteritems()} - df=pd.DataFrame.from_dict(dictionary).transpose() + df = pd.DataFrame.from_dict(dictionary).transpose() df.index.names = ['Library', 'Readlength'] return df + def run_MismatchFrequencies(args): - kw_list, resultDict=setup_MismatchFrequencies(args) + kw_list, resultDict = setup_MismatchFrequencies(args) references = [MismatchFrequencies(**kw_dict).references for kw_dict in kw_list] return (resultDict, references[0]) + def main(): result_dict, references = run_MismatchFrequencies(args) df = format_result_dict(result_dict, references, args.possible_mismatches) @@ -273,12 +286,12 @@ plot_result(reduced_dict, args) reduced_df = nested_dict_to_df(reduced_dict) df_to_tab(reduced_df, args.output_tab) - if not args.expanded_output_tab == None: + if args.expanded_output_tab: df_to_tab(df, args.expanded_output_tab) return reduced_dict if __name__ == "__main__": - + parser = argparse.ArgumentParser(description='Produce mismatch statistics for BAM/SAM alignment files.') parser.add_argument('--input', nargs='*', help='Input files in SAM/BAM format') parser.add_argument('--name', nargs='*', help='Name for input file to display in output file. Should have same length as the number of inputs') @@ -286,15 +299,13 @@ parser.add_argument('--output_tab', help='Output filename for table') parser.add_argument('--expanded_output_tab', default=None, help='Output filename for table') parser.add_argument('--possible_mismatches', default=[ - 'AC', 'AG', 'AT','CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG' + 'AC', 'AG', 'AT', 'CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG' ], nargs='+', help='specify mismatches that should be counted for the mismatch frequency. The format is Reference base -> observed base, eg AG for A to G mismatches.') parser.add_argument('--min', '--minimal_readlength', type=int, help='minimum readlength') parser.add_argument('--max', '--maximal_readlength', type=int, help='maximum readlength') parser.add_argument('--n_mm', '--number_allowed_mismatches', type=int, default=1, help='discard reads with more than n mismatches') parser.add_argument('--five_p', '--ignore_5p_nucleotides', type=int, default=0, help='when calculating nucleotide mismatch frequencies ignore the first N nucleotides of the read') parser.add_argument('--three_p', '--ignore_3p_nucleotides', type=int, default=1, help='when calculating nucleotide mismatch frequencies ignore the last N nucleotides of the read') - #args = parser.parse_args(['--input', '3mismatches_ago2ip_s2.bam', '3mismatches_ago2ip_ovary.bam','--possible_mismatches','AC','AG', 'CG', 'TG', 'CT','--name', 'Siomi1', 'Siomi2' , '--five_p', '3','--three_p','3','--output_pdf', 'out.pdf', '--output_tab', 'out.tab', '--expanded_output_tab', 'expanded.tab', '--min', '20', '--max', '22']) + # args = parser.parse_args(['--input', '3mismatches_ago2ip_s2.bam', '3mismatches_ago2ip_ovary.bam','--possible_mismatches','AC','AG', 'CG', 'TG', 'CT','--name', 'Siomi1', 'Siomi2' , '--five_p', '3','--three_p','3','--output_pdf', 'out.pdf', '--output_tab', 'out.tab', '--expanded_output_tab', 'expanded.tab', '--min', '20', '--max', '22']) args = parser.parse_args() reduced_dict = main() - -
--- a/mismatch_frequencies.xml Wed Mar 23 09:59:33 2016 -0400 +++ b/mismatch_frequencies.xml Sat Dec 22 04:15:47 2018 -0500 @@ -1,25 +1,29 @@ <tool id="mismatch_frequencies" name="Mismatch Frequencies" version="0.1.0" hidden="false" > <description>Analyze mismatch frequencies in BAM/SAM alignments</description> <requirements> - <requirement type="package" version="0.7.7">pysam</requirement> - <requirement type="package" version="0.14.1">pandas</requirement> - <requirement type="package" version="1.2.1">matplotlib</requirement> + <requirement type="package" version="0.8.3">pysam</requirement> + <requirement type="package" version="0.19.0">pandas</requirement> + <requirement type="package" version="1.5.3">matplotlib</requirement> </requirements> - <command interpreter="python">mismatch_frequencies.py --input - #for i in $rep - "$i.input_file" - #end for - --name - #for i in $rep - "$i.input_file.element_identifier" - #end for - --output_pdf $output_pdf --output_tab $output_tab --min $min_length --max $max_length - --n_mm $number_of_mismatches - --five_p $five_p - --three_p $three_p - --expanded_output_tab $expanded_tab - --possible_mismatches $possible_mismatches - </command> + <command detect_errors="aggressive"><![CDATA[ + python '$__tool_directory__'/mismatch_frequencies.py --input + #for i in $rep + "$i.input_file" + #end for + --name + #for i in $rep + "$i.input_file.element_identifier" + #end for + --output_pdf '$output_pdf' + --output_tab '$output_tab' + --min $min_length + --max $max_length + --n_mm $number_of_mismatches + --five_p $five_p + --three_p $three_p + --expanded_output_tab '$expanded_tab' + --possible_mismatches $possible_mismatches + ]]></command> <inputs> <repeat name="rep" title="alignment files"> <param name="input_file" type="data" format="bam,sam" label="Alignment file" help="The input alignment file(s) for which to analyze the mismatches."/> @@ -33,7 +37,7 @@ <param name="five_p" label="Ignore mismatches in the first N nucleotides of a read" type="integer" value="0"/> <param name="three_p" label="Ignore mismatches in the last N nucleotides of a read" help="useful to discriminate between tailing events and editing events" type="integer" value="3"/> <param help="Output expanded tabular format" label="Nucleotide mismatches per reference sequence" name="expanded" type="select"> - <option select="true" value="false">No</option> + <option selected="true" value="false">No</option> <option value="expanded">Yes</option> </param> </inputs> @@ -66,12 +70,13 @@ ***What it does*** -This tool reconstitues for each aligned read of an alignment file in SAM/BAM format whether -a mismatch is annotated in the MD tag, and if that is the case counts the identity of the -mismatch relative to the reference sequence. The output is a PDF document with the calculated -frequency for each mismatch that occured relative to the total number of valid reads and a table -with the corresponding values. Read length can be limited to a specific read length, and 5 prime and -3 prime-most nucleotides of a read can be ignored. +This tool reconstitues for each aligned read of an alignment file in SAM/BAM +format whether a mismatch is annotated in the MD tag, and if that is the case +counts the identity of the mismatch relative to the reference sequence. The +output is a PDF document with the calculated frequency for each mismatch that +occured relative to the total number of valid reads and a table with the +corresponding values. Read length can be limited to a specific read length, and +5 prime and 3 prime-most nucleotides of a read can be ignored. ----
--- a/tool_dependencies.xml Wed Mar 23 09:59:33 2016 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,12 +0,0 @@ -<?xml version="1.0"?> -<tool_dependency> - <package name="pysam" version="0.7.7"> - <repository changeset_revision="0a5141bdf9d0" name="package_pysam_0_7_7" owner="iuc" toolshed="https://toolshed.g2.bx.psu.edu" /> - </package> - <package name="pandas" version="0.14.1"> - <repository changeset_revision="ac9f317487a9" name="package_pandas_0_14" owner="iuc" toolshed="https://toolshed.g2.bx.psu.edu" /> - </package> - <package name="matplotlib" version="1.2.1"> - <repository changeset_revision="48020985e28c" name="package_matplotlib_1_2" owner="iuc" toolshed="https://toolshed.g2.bx.psu.edu" /> - </package> -</tool_dependency>