view blast_tool.py @ 3:0095bf758b19 draft

Uploaded
author nedias
date Wed, 12 Oct 2016 00:03:53 -0400
parents ec8fe63afdb8
children
line wrap: on
line source

"""
 Util class of BLAST API
 Use Biopython's BLAST interface to access BLAST API
 BLAST call may take more than 5 min to complete.

 Author Nedias  Sept, 2016

"""


# BLAST Web api, use to calling BLAST using url
from Bio.Blast import NCBIWWW
# BLAST XML util, use to read data from BLAST's response
from Bio.Blast import NCBIXML


def exec_tool(options):
    if options.format and options.format == "fasta":
        blast_call(options.input, options.output)




# Call BLAST protein API
# input: an fasta format file with polypeptide data
# output: the searching result file from BLAST in XML format
# return: execute status code(developing)
def blast_call(in_file, out_file):

    # Open input file(read only)
    input_file = open(in_file, "rU")
    # Create an output file(create or override)
    output_file = open(out_file, "w+")

    # Read all data from the input fasta file
    fasta_string = input_file.read()

    # Call BLAST to search similar protein data
    # blastp's "p" means using the protein search API
    # "nr" means not specific database, which will perform a search base on all possible database
    # TODO:May consider parametrize these options
    result_handle = NCBIWWW.qblast("blastp", "nr", fasta_string)

    # Read result form responded data and save them in output file
    result = result_handle.read()
    output_file.write(result)

    return 0


# Call BLAST protein API (text version)
# input: polypeptide data text
# return: the searching result from BLAST in StringIO format
def blast_call_text(in_text):

    # Call BLAST to search similar protein data
    result_handle = NCBIWWW.qblast("blastp", "nr", in_text)

    return result_handle


# Abstract data from BLAST responded XML
# input: the searching result file from BLAST in XML format
# return: an dictionary include all data from BLAST result.
#      the structure of the dictionary is:
#      dict -- hits: Integer, number of total hits during searching
#           -- alignments: List, alignments for all polypeptide chains(there could be many chains in a single file)
#                |          (TODO:May consider change to dictionary and use the tag of every polypeptide chain as entry)
#                |
#                -- hsps: List, all high-scoring pairs(alignment) for one polypeptide chain
#                    |
#                    hps: Dictionary, contains all data of the high-scoring pair
def read_blast_result(blast_xml):

    # Open the BLAST result
    result_file = open(blast_xml)
    # Read all result using biopython
    blast_record = NCBIXML.read(result_file)
    # E-value limit, every data with a less-than 96% e-value will be filtered
    E_VALUE_THRESH = 0.04

    # Initialize the result dictionary
    result_dict = dict()

    # Store the hits number
    result_dict['hits': len(blast_record.alignments)]
    # Initialize the alignment list
    aligns = list()
    # Scan through all alignments
    for alignment in blast_record.alignments:
        # Initialize the high-score pairs list
        hsps = list()
        # Scan through all hsps
        for hsp in alignment.hsps:
            # filter all hsp has less e-value than E_VALUE_THRESH
            if hsp.expect < E_VALUE_THRESH:
                # Initialize high-score pair dictionary
                hsp_dict = dict()
                # Store all data obtained from BLAST into the dictionary
                hsp_dict['seq'] = alignment.title
                hsp_dict['len'] = alignment.length
                hsp_dict['eval'] = hsp.expect
                # Identity is calculated as the percentage of identities in the alignment
                hsp_dict['ident'] = int(round(hsp.identities * float(100) / alignment.length))
                hsp_dict['query'] = hsp.query
                hsp_dict['match'] = hsp.match
                hsp_dict['sbjct'] = hsp.sbjct
            hsps.append(hsp_dict)
        # Store the hsps into the alignment data
        aligns.append(hsps)

    # Store alignment data into the dictionary
    result_dict['alignments', aligns]
    return result_dict


# Abstract data from BLAST responded XML (text version)
# input: the searching result file from BLAST in StringIO
# return: an dictionary include all data from BLAST result.
def read_blast_result_text(blast_handle):

    blast_record = NCBIXML.read(blast_handle)

    E_VALUE_THRESH = 0.04

    result_dict = dict()

    result_dict['hits'] =  len(blast_record.alignments)
    aligns = list()
    for alignment in blast_record.alignments:
        hsps = list()
        for hsp in alignment.hsps:

            if hsp.expect < E_VALUE_THRESH:
                hsp_dict = dict()
                hsp_dict['seq'] = alignment.title
                hsp_dict['len'] = alignment.length
                hsp_dict['eval'] = hsp.expect
                hsp_dict['ident'] = int(round(hsp.identities * float(100) / alignment.length))
                hsp_dict['query'] = hsp.query
                hsp_dict['match'] = hsp.match
                hsp_dict['sbjct'] = hsp.sbjct
            hsps.append(hsp_dict)
        aligns.append(hsps)

    result_dict['alignments'] = aligns
    return result_dict


# Sample of usage (text version)
def text():
    result = blast_call_text('MTSQTTINKPGPGDGSPAGSAPAKGWRGHPWVTLVTVAVGVMMVALDGTIVAIANPAIQD\
                            DLDASLADVQWITNAYFLALAVALITAGKLGDRFGHRQTFLIGVAGFAASSGAIGLSGSI\
                            AAVIVFRVFQGLFGALLMPAALGLLRATFPAEKLNMAIGIWGMVIGASTAGGPILGGVLV\
                            EHVNWQSVFFINVPVGIVAVVLGVMILLDHRAANAPRSFDVVGIVLLSASMFALVWALIK\
                            APEWGWGSGQTWVYIGGSVVGFVLFSVWETKVKEPLIPLAMFRSVPLSAGVVLMVLMAIA\
                            FMGGLFFVTFYLQNVHGMSPVDAGLHLLPLTGMMIVASPLAGAMITKVGPRIPLAGGMVC\
                            TAVAMFGISTLETDTGSGLMSIWFGLLGLGLAPVMVGATEVIVGNAPMELSGVAGGLQQA\
                            AMQIGGSLGTAVLGAVMASKVDSDLAGNWKDAGLPELTPQQADQASEAVRVGVPPVAPGT\
                            PAEVAGKITDVAHDTFISGMSLASLVAAGVAVVAVFVAFLTKRGENAEAGAGVGHI'
                            )
    re_dict = read_blast_result_text(result)
    print(re_dict['hits'])
    for alignments in re_dict['alignments']:
        for hsp in alignments:
            print(hsp['seq'])
            print(hsp['len'])
            print(hsp['eval'])
            print(hsp['ident'])
            print(hsp['query'][0:75] + "...")
            print(hsp['match'][0:75] + "...")
            print(hsp['sbjct'][0:75] + "...")