Mercurial > repos > nicolas > oghma
comparison evaluation.R @ 4:62e7a8d66b1f draft
Uploaded
author | nicolas |
---|---|
date | Fri, 21 Oct 2016 06:25:28 -0400 |
parents | |
children | 4f017b111d6c |
comparison
equal
deleted
inserted
replaced
3:0f87be78e151 | 4:62e7a8d66b1f |
---|---|
1 | |
2 ######################################################## | |
3 # | |
4 # creation date : 08/01/16 | |
5 # last modification : 23/06/16 | |
6 # author : Dr Nicolas Beaume | |
7 # owner : IRRI | |
8 # | |
9 ######################################################## | |
10 | |
11 log <- file(paste(getwd(), "log_evaluation.txt", sep="/"), open = "wt") | |
12 sink(file = log, type="message") | |
13 | |
14 library("pROC") | |
15 library("randomForest") | |
16 library("miscTools") | |
17 | |
18 predictionCorrelation <- function(prediction, obs) { | |
19 return(cor(prediction, obs, method = "pearson")) | |
20 } | |
21 | |
22 r2.plot <- function(true, predicted, scatterplot=T) { | |
23 if(scatterplot) { | |
24 plot(true, predicted, xlab="trait value", ylab="predicted value", main="", pch=16, | |
25 ylim=c(min(min(true), min(predicted)), max(max(true), max(predicted)))) | |
26 lines(true, true, col="red") | |
27 } else { | |
28 plot(true, ylim=c(min(min(true), min(predicted)), max(max(true), max(predicted))), | |
29 xlab="individual index", ylab="traitValue", type="l", main="") | |
30 lines(predicted, col="red") | |
31 legend("topright", legend = c("pedicted", "traitValue"), col = c("red", "black"), lty=c(1,1)) | |
32 } | |
33 } | |
34 | |
35 r2 <- function(target, prediction) { | |
36 sst <- sum((target-mean(target))^2) | |
37 ssr <- sum((target-prediction)^2) | |
38 return(1-ssr/sst) | |
39 } | |
40 | |
41 ################################## main function ########################### | |
42 | |
43 evaluatePredictions <- function(data, prediction=NULL, traitValue=NULL, doR2=F, | |
44 prefix="data", folds=NULL, classes=NULL, doCor=F, path=".") { | |
45 eval <- NULL | |
46 if(doR2) { | |
47 eval <- c(eval, list(r2=NULL)) | |
48 } | |
49 if(doCor) { | |
50 eval <- c(eval, list(cor=NULL)) | |
51 } | |
52 for (i in 1:length(folds)) { | |
53 train <- unlist(folds[-i]) | |
54 test <- folds[[i]] | |
55 if(doR2) { | |
56 if(!is.null(traitValue)) { | |
57 jpeg(paste(path, "/", prefix,"fold_",i,"_scatterPlot.jpeg", sep="")) | |
58 eval$r2 <- c(eval$r2, r2(traitValue[test], prediction[[i]])) | |
59 r2.plot(traitValue[test], prediction[[i]]) | |
60 dev.off() | |
61 } else { | |
62 eval$r2 <- c(eval$r2, NA) | |
63 } | |
64 } | |
65 if(doCor) { | |
66 if(!is.null(traitValue)) { | |
67 eval$cor <- c(eval$cor, cor(traitValue[test], prediction[[i]])) | |
68 } else { | |
69 eval$cor <- c(eval$cor, NA) | |
70 } | |
71 } | |
72 } | |
73 print(eval) | |
74 write.table(eval, file = paste(path,"/",prefix,"_evaluation.csv", sep=""), sep="\t", row.names = F) | |
75 } | |
76 ############################ main ############################# | |
77 # evaluation.sh -i path_to_data -p prediction -f folds -t phenotype -r -c -a -n name -o path_to_result_directory | |
78 ## -i : path to the file that contains the genotypes. | |
79 # please note that the table must be called "encoded" when your datafile is saved into .rda (automatic if encode.R is used) | |
80 | |
81 ## -p : prediction made through any methods | |
82 # please note that the table must be called "prediction" when your datafile is saved into .rda | |
83 # (automatic if prediction methods from this pipeline were used) | |
84 | |
85 ## -f : index of the folds to which belong each individual | |
86 # please note that the list must be called "folds" (automatic if folds.R was used) | |
87 | |
88 ## -t : phenotype of each individual | |
89 # please note that the table must be called "phenotype" when your datafile is saved into .rda (automatic if loadGenotype.R was used) | |
90 | |
91 ## -r : flag to run a R2 evaluation | |
92 | |
93 ## -c : flag to run a correlation evaluation | |
94 | |
95 ## -n : prefix of the names of all result files | |
96 | |
97 ## -o : path to the directory where the evaluation results are stored. | |
98 cmd <- commandArgs(trailingOnly = T) | |
99 source(cmd[1]) | |
100 # set which evaluation are used | |
101 if(as.integer(doR2) == 1) { | |
102 doR2 <- T | |
103 } | |
104 if(as.integer(doCor) == 1) { | |
105 doCor <- T | |
106 } | |
107 # load genotype & phenotype | |
108 con = file(genotype) | |
109 genotype <- readLines(con = con, n = 1, ok=T) | |
110 close(con) | |
111 genotype <- read.table(genotype, sep="\t",h=T) | |
112 phenotype <- read.table(phenotype, sep="\t",h=T)[,1] | |
113 # load prediction | |
114 con = file(prediction) | |
115 prediction <- readLines(con = con, n = 1, ok=T) | |
116 close(con) | |
117 prediction <- readRDS(prediction) | |
118 # load folds | |
119 con = file(folds) | |
120 folds <- readLines(con = con, n = 1, ok=T) | |
121 close(con) | |
122 folds <- readRDS(folds) | |
123 evaluatePredictions(data=genotype, prediction=prediction, traitValue=phenotype, doR2=doR2, | |
124 prefix=name, folds=folds, doCor=doCor, path=out) |