Mercurial > repos > nicolas > oghma
comparison aggregation.R @ 46:ac0c3826cca4 draft
Uploaded
author | nicolas |
---|---|
date | Wed, 26 Oct 2016 02:32:35 -0400 |
parents | |
children | cea4a54c52d0 |
comparison
equal
deleted
inserted
replaced
45:96dc9d514099 | 46:ac0c3826cca4 |
---|---|
1 ######################################################## | |
2 # | |
3 # creation date : 25/10/16 | |
4 # last modification : 25/10/16 | |
5 # author : Dr Nicolas Beaume | |
6 # | |
7 ######################################################## | |
8 | |
9 suppressWarnings(suppressMessages(library(GA))) | |
10 library("miscTools") | |
11 library(rpart) | |
12 suppressWarnings(suppressMessages(library(randomForest))) | |
13 library(e1071) | |
14 suppressWarnings(suppressMessages(library(glmnet))) | |
15 ############################ helper functions ####################### | |
16 | |
17 ##### Genetic algorithm | |
18 optimizeOneIndividual <- function(values, trueValue) { | |
19 # change the value into a function | |
20 f <- function(w) {sum(values * w/sum(w))} | |
21 fitness <- function(x) {1/abs(trueValue-f(x))} | |
22 resp <- ga(type = "real-valued", fitness = fitness, min = rep(0, length(values)), max = rep(1, length(values)), | |
23 maxiter = 1000, monitor = NULL, keepBest = T) | |
24 resp@solution <- resp@solution/sum(resp@solution) | |
25 return(resp) | |
26 } | |
27 | |
28 optimizeWeight <- function(values, trueValue, n=1000) { | |
29 fitnessAll <- function(w) { | |
30 predicted <- apply(values, 1, weightedPrediction.vec, w) | |
31 return(mean(r2(trueValue, predicted))) | |
32 #return(mean(1/abs(trueValue-predicted))) | |
33 } | |
34 resp <- ga(type = "real-valued", fitness = fitnessAll, min = rep(0, ncol(values)), max = rep(1, ncol(values)), | |
35 maxiter = n, monitor = NULL, keepBest = T) | |
36 resp@solution <- resp@solution/sum(resp@solution) | |
37 return(resp) | |
38 } | |
39 | |
40 weightedPrediction <- function(classifiers, w) { | |
41 if(length(w) > ncol(classifiers)) { | |
42 warning("more weights than classifiers, extra weigths are ignored") | |
43 w <- w[1:ncol(classifiers)] | |
44 } else if(length(w) < ncol(classifiers)) { | |
45 warning("less weights than classifiers, extra classifiers are ignored") | |
46 classifiers <- classifiers[,1:length(w)] | |
47 } | |
48 prediction <- NULL | |
49 prediction <- c(prediction, apply(classifiers, 1, weightedPrediction.vec, w)) | |
50 return(prediction) | |
51 } | |
52 | |
53 weightedPrediction.vec <- function(values, w) { | |
54 return(sum(values * w/sum(w))) | |
55 } | |
56 | |
57 ##### meta-decision tree | |
58 | |
59 tuneTree <- function(data, target) { | |
60 data <- data.frame(data, target=target) | |
61 size <- nrow(data) | |
62 xerror <- NULL | |
63 split <- 1:ceiling(size/5) | |
64 leafSize <- 1:ceiling(size/10) | |
65 xerror <- matrix(rep(-1, length(split)*length(leafSize)), ncol=length(leafSize)) | |
66 cp <- matrix(rep(-1, length(split)*length(leafSize)), ncol=length(leafSize)) | |
67 for(i in 1:length(split)) { | |
68 for(j in 1:length(leafSize)) { | |
69 op <- list(minsplit=split[i], minbucket=leafSize[j]) | |
70 tree <- rpart(target ~., data=data, control=op, method="anova") | |
71 xerror[i,j] <- tree$cptable[which.min(tree$cptable[,"xerror"]),"xerror"] | |
72 cp[i,j] <- tree$cptable[which.min(tree$cptable[,"xerror"]),"CP"] | |
73 } | |
74 } | |
75 index <- which(xerror==min(xerror), arr.ind = T) | |
76 op <- list(minsplit=split[index[1]], minbucket=leafSize[index[2]], cp=cp[index[1], index[2]]) | |
77 return(op) | |
78 } | |
79 | |
80 ###### meta-LASSO | |
81 # create fold by picking at random row indexes | |
82 createFolds <- function(nbObs, n) { | |
83 # pick indexes | |
84 index <- sample(1:n, size=nbObs, replace = T) | |
85 # populate folds | |
86 folds <- NULL | |
87 for(i in 1:n) { | |
88 folds <- c(folds, list(which(index==i))) | |
89 } | |
90 return(folds) | |
91 } | |
92 | |
93 searchParamLASSO <- function(genotype, phenotype, alpha=seq(0,1,0.1), n=7) { | |
94 folds <- createFolds(nrow(genotype), n = n) | |
95 acc <- NULL | |
96 indexAlpha <- 1 | |
97 for(a in alpha) { | |
98 curAcc <- NULL | |
99 for(i in 1:n) { | |
100 train <- genotype[-folds[[i]],] | |
101 test <- genotype[folds[[i]],] | |
102 phenoTrain <- phenotype[-folds[[i]]] | |
103 phenoTest <- phenotype[folds[[i]]] | |
104 cv <- cv.glmnet(x=as.matrix(train), y=phenoTrain, alpha=a) | |
105 model <- glmnet(x=as.matrix(train), y=phenoTrain, alpha=a, lambda = cv$lambda.1se) | |
106 pred <- predict(model, test, type = "response") | |
107 curAcc <- c(curAcc, r2(phenoTest, pred)) | |
108 } | |
109 acc <- c(acc, mean(curAcc)) | |
110 } | |
111 names(acc) <- alpha | |
112 return(as.numeric(names(acc)[which.max(acc)])) | |
113 } | |
114 | |
115 ###### meta-random forest | |
116 | |
117 searchParamRF <- function(genotype, phenotype, rangeNtree, mtry=ncol(genotype)) { | |
118 n <- ceiling(nrow(genotype)/3) | |
119 indexTest <- sample(1:nrow(genotype), size=n) | |
120 train <- genotype[-indexTest,] | |
121 test <- genotype[indexTest,] | |
122 phenoTrain <- phenotype[-indexTest] | |
123 phenoTest <- phenotype[indexTest] | |
124 acc <- NULL | |
125 indexNtree <- 1 | |
126 for(ntree in rangeNtree) { | |
127 model <- randomForest(x=train, y=phenoTrain, ntree = ntree, mtry = mtry) | |
128 pred <- predict(model, test) | |
129 acc <- c(acc, r2(phenoTest, pred)) | |
130 } | |
131 names(acc) <- rangeNtree | |
132 best <- which.max(acc) | |
133 return(as.numeric(names(acc)[best])) | |
134 } | |
135 | |
136 ###### meta-SVM | |
137 searchParamSVM <- function(train, target, kernel="radial") { | |
138 # tuning parameters then train | |
139 model <- NULL | |
140 switch(kernel, | |
141 sigmoid={ | |
142 tune <- tune.svm(train, target, gamma = 10^(-6:-1), cost = 10^(0:2), kernel="sigmoid"); | |
143 g <- tune$best.parameters[[1]]; | |
144 c <- tune$best.parameters[[2]]; | |
145 model <- svm(x=train, y=target, gamma = g, cost = c, kernel = "sigmoid")}, | |
146 linear={ | |
147 tune <- tune.svm(train, target, cost = 10^(0:2), kernel="linear"); | |
148 c <- tune$best.parameters[[1]]; | |
149 model <- svm(x=train, y=target, cost = c, kernel = "linear")}, | |
150 polynomial={ | |
151 tune <- tune.svm(train, target, gamma = 10^(-6:-1), cost = 10^(0:2), degree = 0:4, coef0 = 0:3, kernel="polynomial"); | |
152 d <- tune$best.parameters[[1]]; | |
153 g <- tune$best.parameters[[2]]; | |
154 coef <- tune$best.parameters[[3]]; | |
155 c <- tune$best.parameters[[4]]; | |
156 model <- svm(x=train, y=target, gamma = g, cost = c, kernel = "polynomial", degree = d, coef0 = coef)}, | |
157 { | |
158 tune <- tune.svm(train, target, gamma = 10^(-6:-1), cost = 10^(0:3), kernel="radial"); | |
159 g <- tune$best.parameters[[1]]; | |
160 c <- tune$best.parameters[[2]]; | |
161 model <- svm(x=train, y=target, gamma = g, cost = c, kernel = "radial")} | |
162 ) | |
163 return(model) | |
164 } | |
165 | |
166 #################### upper level functions ##################### | |
167 | |
168 aggregateDT <- function(classifiers, target=NULL, prediction=F, model=NULL, out) { | |
169 if(!prediction) { | |
170 treeParam <- tuneTree(classifiers, target) | |
171 data <- data.frame(classifiers, target) | |
172 model <- rpart(target ~., data=data, method = "anova", control = treeParam) | |
173 model <- prune(model, cp=treeParam["cp"]) | |
174 saveRDS(model, out) | |
175 } else { | |
176 saveRDS(predict(model, data.frame(classifiers)), out) | |
177 } | |
178 } | |
179 | |
180 aggregateGeneticMean <- function(classifiers, target=NULL, prediction=F, model=NULL, out){ | |
181 if(!prediction) { | |
182 opt <- optimizeWeight(values = classifiers, trueValue = target) | |
183 saveRDS(opt@solution, out) | |
184 # evaluation of the method | |
185 } else { | |
186 saveRDS(weightedPrediction.vec(classifiers, model), out) | |
187 } | |
188 } | |
189 | |
190 aggregateLASSO <- function(classifiers, target=NULL, prediction=F, model=NULL, alpha=NULL, out) { | |
191 if(!prediction) { | |
192 alpha <- searchParamLASSO(classifiers, target) | |
193 cv <- cv.glmnet(x=as.matrix(classifiers), y=target, alpha=alpha) | |
194 model <- glmnet(x=as.matrix(classifiers), y=target, alpha=alpha, lambda = cv$lambda.1se) | |
195 saveRDS(model, out) | |
196 } else { | |
197 saveRDS(predict(model, classifiers), out) | |
198 } | |
199 } | |
200 | |
201 aggregateRF <- function(classifiers, target=NULL, model=NULL, ntree=NULL, prediction=F, out) { | |
202 if(!prediction) { | |
203 ntree <- searchParamRF(genotype = classifiers, phenotype = target, | |
204 rangeNtree = seq(100, 1000, 100)) | |
205 model <- randomForest(x=classifiers, y=target, ntree = ntree, mtry = ncol(classifiers)) | |
206 saveRDS(model, out) | |
207 } else { | |
208 saveRDS(predict(model, classifiers), out) | |
209 } | |
210 } | |
211 | |
212 aggregateSVM <- function(classifiers, target=NULL, prediction=F, | |
213 model=NULL, c=NULL, g=NULL, d=NULL, coef=NULL, kernel="radial", out) { | |
214 if(!prediction) { | |
215 model <- searchParamSVM(train = classifiers, target = target, kernel = kernel) | |
216 saveRDS(model, out) | |
217 } else { | |
218 saveRDS(predict(model, classifiers), out) | |
219 } | |
220 } | |
221 | |
222 ################################### main ############################# | |
223 # # load argument | |
224 cmd <- commandArgs(T) | |
225 source(cmd[1]) | |
226 # check if evaluation is required | |
227 evaluation <- F | |
228 if(as.integer(doEvaluation) == 1) { | |
229 evaluation <- T | |
230 con = file(folds) | |
231 folds <- readLines(con = con, n = 1, ok=T) | |
232 close(con) | |
233 folds <- readRDS(folds) | |
234 } | |
235 # check for model | |
236 if(model == "None") { | |
237 model <- NULL | |
238 prediction <- F | |
239 } else { | |
240 prediction <- T | |
241 con = file(model) | |
242 model <- readLines(con = con, n = 1, ok=T) | |
243 close(con) | |
244 model <- readRDS(model) | |
245 } | |
246 # load classifiers and phenotype | |
247 classifiers <- NULL | |
248 classifNames <- NULL | |
249 if(lassoPred !="None"){ | |
250 classifiers <- c(classifiers, lassoPred) | |
251 classifNames <- c(classifNames, "lasso") | |
252 } | |
253 if(rrBLUPPred !="None"){ | |
254 classifiers <- c(classifiers, rrBLUPPred) | |
255 classifNames <- c(classifNames, "rrBLUP") | |
256 } | |
257 if(rfPred !="None"){ | |
258 classifiers <- c(classifiers, rfPred) | |
259 classifNames <- c(classifNames, "rf") | |
260 } | |
261 if(svmPred !="None"){ | |
262 classifiers <- c(classifiers, svmPred) | |
263 classifNames <- c(classifNames, "svm") | |
264 } | |
265 classifPrediction <- NULL | |
266 for(classif in classifiers) { | |
267 classifPrediction <- c(classifPrediction, list(read.table(classif, sep="\t", h=T))) | |
268 } | |
269 classifPrediction <- data.frame(classifPrediction) | |
270 colnames(classifPrediction) <- classifNames | |
271 # phenotype is written as a table (in columns) but it must be sent as a vector for mixed.solve | |
272 phenotype <- read.table(phenotype, sep="\t", h=T)[,1] | |
273 out <- paste(out, ".rds", sep = "") | |
274 # aggregate ! | |
275 switch(method, | |
276 geneticMean={ | |
277 aggregateGeneticMean(classifiers = classifPrediction, target = phenotype, | |
278 out = out, prediction = prediction, model=model) | |
279 }, | |
280 dt={ | |
281 aggregateDT(classifiers = classifPrediction, target = phenotype, | |
282 out = out, prediction = prediction, model=model) | |
283 }, | |
284 lasso={ | |
285 aggregateLASSO(classifiers = classifPrediction, target = phenotype, | |
286 out = out, prediction = prediction, model=model) | |
287 }, | |
288 rf={ | |
289 aggregateRF(classifiers = classifPrediction, target = phenotype, | |
290 out = out, prediction = prediction, model=model) | |
291 }, | |
292 # svm | |
293 {aggregateSVM(classifiers = classifPrediction, target = phenotype, kernel = kernel, | |
294 out = out, prediction = prediction, model = model)} | |
295 ) | |
296 # return path of the result file to galaxy | |
297 cat(paste(out, "\n", sep="")) |