view encode.R @ 4:62e7a8d66b1f draft

Uploaded
author nicolas
date Fri, 21 Oct 2016 06:25:28 -0400
parents f3f230290ffe
children 89175737f16b
line wrap: on
line source

########################################################
#
# creation date : 04/01/16
# last modification : 17/09/16
# author : Dr Nicolas Beaume
# owner : IRRI
#
########################################################

log <- file(paste(getwd(), "log_encode.txt", sep="/"), open = "wt")
sink(file = log, type="message")

############################ helper functions #######################

# encode one position in one individual
encodeGenotype.position <- function(x, major, code=c(0,1,2), sep=""){
  res <- x
  if(!is.na(x)) {
    if(isHeterozygous(x, sep = sep)) {
      # heterozygous
      res <- code[2]
    } else {
      # determine whether it is the minor or major allele
      x <- unlist(strsplit(x, sep))
      # need to check only one element as we already know it is a homozygous
      if(length(x) > 1) {
        x <- x[1]
      }
      if(x==major) {
        res <- code[3]
      } else {
        res <- code[1]
      }
    }
  } else {
    res <- NA
  }
  return(res)
}

# rewrite a marker to determine the major allele
encodeGenotype.rewrite <- function(x, sep=""){
  res <- x
  if(!is.na(x)) {
    if(length(unlist(strsplit(x,sep)))==1) {
      # in case of homozygous, must be counted 2 times
      res <- c(x,x)
    } else {
      res <- unlist(strsplit(x, split=sep))
    }
  } else {
    res <- NA
  }
  return(res)
}

# encode one individual
encodeGenotype.vec <- function(indiv, sep="", code=c(0,1,2)){
  newIndiv <- unlist(lapply(as.character(indiv), encodeGenotype.rewrite, sep))
  stat <- table(as.character(newIndiv))
  major <- names(stat)[which.max(stat)]
  indiv <- unlist(lapply(indiv, encodeGenotype.position, major, code, sep))
  return(indiv)
}


isHeterozygous <- function(genotype, sep=""){
  bool <- F
  if(is.na(genotype)){
    bool <- NA
  } else {
    x <- unlist(strsplit(genotype, sep))
    if(length(x) > 1 & !(x[1] %in% x[2])) {
      bool <- T
    }
    
  }
  return(bool)
}

checkEncoding <- function(encoded, code=c(0,1,2)) {
  check <- NULL
  for(i in 1:ncol(encoded)) {
    major <- length(which(encoded[,i]==code[3]))
    minor <- length(which(encoded[,i]==code[1]))
    if(major >= minor) {
      check <- c(check, T)
    } else {
      check <- c(check, F)
    }
  }
  return(check)
}

################################## main function ###########################
# encode all individuals
# encode genotype into a {-1,0,1} scheme, where -1 = minor homozygous, 0 = heterozygous, 1 = major homozygous
encodeGenotype <- function(raw, sep="", code=c(0,1,2), outPath){
  encoded <- apply(raw, 2, encodeGenotype.vec, sep, code)
  encoded[is.na(encoded)] <- -1
  write.table(encoded, file=paste(outPath,".csv", sep=""), row.names = F, sep="\t")
}

############################ main #############################
# running from terminal (supposing the OghmaGalaxy/bin directory is in your path) :
# encode.sh -i path_to_raw_data -s separator -c code -o path_to_result_directory 
## -i : path to the file that contains the genotypes to encode, must be a .rda file (as outputed by loadGenotype.R).
# please note that the table must be called "genotype" when your datafile is saved into .rda (automatic if loadGenotype.R was used)

## -s : in case of heterozygous both allele are encoded in the same "cell" of the table and separated by a character
# (most often "" or "/"). This argument specify which character

## -c : the encoding of minor allele/heterozygous/major allele. by default {-1,0,1}

## -o : path to the file of encoded genotype. the .rda extension is automatically added

cmd <- commandArgs(T)
source(cmd[1])
genotype <- read.table(genotype, sep="\t", stringsAsFactors = F, h=T)
# deal with optional argument
code <- strsplit(code, ",")
code <- unlist(lapply(code, as.numeric), use.names = F)
encodeGenotype(raw=genotype, sep=sep, code = code, outPath = out)
cat(paste(out,".csv", "\n", sep=""))