changeset 9:dcc10adbe46b draft

Uploaded
author nicolas
date Fri, 21 Oct 2016 06:27:31 -0400
parents 2a613e397874
children f311dc86809f
files lasso.R
diffstat 1 files changed, 122 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lasso.R	Fri Oct 21 06:27:31 2016 -0400
@@ -0,0 +1,122 @@
+########################################################
+#
+# creation date : 08/01/16
+# last modification : 01/09/16
+# author : Dr Nicolas Beaume
+# owner : IRRI
+#
+########################################################
+log <- file(paste(getwd(), "log_LASSO.txt", sep="/"), open = "wt")
+sink(file = log, type="message")
+
+library(glmnet)
+library(methods)
+############################ helper functions #######################
+
+createFolds <- function(nbObs, n) {
+  index <- sample(1:n, size=nbObs, replace = T)
+  folds <- NULL
+  for(i in 1:n) {
+    folds <- c(folds, list(which(index==i)))
+  }
+  return(folds)
+}
+
+optimize <- function(genotype, phenotype, alpha=seq(0,1,0.1), nfolds=7) {
+  acc <- NULL
+  indexAlpha <- 1
+  for(a in alpha) {
+    curAcc <- NULL
+    for(i in 1:nfolds) {
+      n <- ceiling(nrow(genotype)/3)
+      indexTest <- sample(1:nrow(genotype), size=n)
+      train <- genotype[-indexTest,]
+      test <- genotype[indexTest,]
+      phenoTrain <- phenotype[-indexTest]
+      phenoTest <- phenotype[indexTest]
+      cv <- cv.glmnet(x=as.matrix(train), y=phenoTrain, alpha=a)
+      model <- glmnet(x=as.matrix(train), y=phenoTrain, alpha=a, lambda = cv$lambda.1se)
+      pred <- predict(model, test, type = "response")
+      curAcc <- c(curAcc, r2(phenoTest, pred))
+    }
+    acc <- c(acc, mean(curAcc))
+  }
+  names(acc) <- alpha
+  return(as.numeric(names(acc)[which.max(acc)]))
+}
+
+r2 <- function(target, prediction) {
+  sst <- sum((target-mean(target))^2)
+  ssr <- sum((target-prediction)^2)
+  return(1-ssr/sst)
+}
+################################## main function ###########################
+
+lassoSelection <- function(genotype, phenotype, evaluation = T, outFile, folds, alpha=NULL) {
+  # go for optimization
+  if(is.null(alpha)) {
+    alpha <- seq(0,1,0.1)
+    alpha <- optimize(genotype=genotype, phenotype=phenotype, alpha = alpha)
+  }
+  # evaluation
+  if(evaluation) {
+    prediction <- NULL
+    for(i in 1:length(folds)) {
+      train <- genotype[-folds[[i]],]
+      test <- genotype[folds[[i]],]
+      phenoTrain <- phenotype[-folds[[i]]]
+      phenoTest <- phenotype[folds[[i]]]
+      cv <- cv.glmnet(x=as.matrix(train), y=phenoTrain, alpha=alpha)
+      lasso.fit <- glmnet(x=as.matrix(train), y=phenoTrain, alpha=alpha, lambda = cv$lambda.1se)
+      prediction <- c(prediction, list(predict(lasso.fit, test, type = "response")[,1]))
+    }
+    saveRDS(prediction, file=paste(outFile,".rds", sep=""))
+    # just create a model
+  } else {
+    cv <- cv.glmnet(x=genotype, y=phenotype, alpha=alpha)
+    model <- glmnet(x=genotype, y=phenotype, alpha=alpha, lambda=cv$lambda.1se)
+    saveRDS(model, file = paste(outFile, ".rds", sep = ""))
+  }
+}
+
+############################ main #############################
+# running from terminal (supposing the OghmaGalaxy/bin directory is in your path) :
+# lasso.sh -i path_to_genotype -p phenotype_file -e -f fold_file -o out_file 
+## -i : path to the file that contains the genotypes, must be a .rda file (as outputed by loadGenotype).
+# please note that the table must be called "encoded" when your datafile is saved into .rda (automatic if encoded.R was used)
+
+## -p : file that contains the phenotype must be a .rda file (as outputed by loadGenotype.R).
+# please note that the table must be called "phenotype" when your datafile is saved into .rda (automatic if loadGenotype.R was used)
+
+## -e : do evaluation instead of producing a model
+
+## -f : index of the folds to which belong each individual
+# please note that the list must be called "folds" (automatic if folds.R was used)
+
+## -o : path to the output folder and generic name of the analysis. The extension related to each type of
+# files are automatically added
+
+cmd <- commandArgs(T)
+source(cmd[1])
+# check if evaluation is required
+evaluation <- F
+if(as.integer(doEvaluation) == 1) {
+  evaluation <- T
+  con = file(folds)
+  folds <- readLines(con = con, n = 1, ok=T)
+  close(con)
+  folds <- readRDS(folds)
+}
+# load classifier parameters
+if(as.numeric(alpha) == -1) {alpha <- NULL}
+# load genotype and phenotype
+con = file(genotype)
+genotype <- readLines(con = con, n = 1, ok=T)
+close(con)
+genotype <- read.table(genotype, sep="\t", h=T)
+# phenotype is written as a table (in columns) but it must be sent as a vector for mixed.solve
+phenotype <- read.table(phenotype, sep="\t", h=T)[,1] 
+# run !
+lassoSelection(genotype = data.matrix(genotype), phenotype = phenotype,
+               evaluation = evaluation, outFile = out, folds = folds, alpha = alpha)
+cat(paste(paste(out, ".rds", sep = ""), "\n", sep=""))