Mercurial > repos > nikhil-joshi > deseq_and_sam2counts
comparison deseq/sam2counts_galaxy.py @ 0:d7f27b43b8ff draft
Uploaded
| author | nikhil-joshi |
|---|---|
| date | Thu, 05 Jul 2012 21:02:43 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:d7f27b43b8ff |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 """ | |
| 4 count.py -- Take SAM files and output a table of counts with column | |
| 5 names that are the filenames, and rowname that are the reference | |
| 6 names. | |
| 7 | |
| 8 Author: Vince Buffalo | |
| 9 Email: vsbuffaloAAAAA@gmail.com (with poly-A tail removed) | |
| 10 """ | |
| 11 | |
| 12 VERSION = 0.91 | |
| 13 | |
| 14 import sys | |
| 15 import csv | |
| 16 from os import path | |
| 17 try: | |
| 18 import pysam | |
| 19 except ImportError: | |
| 20 sys.exit("pysam not installed; please install it\n") | |
| 21 | |
| 22 from optparse import OptionParser | |
| 23 | |
| 24 def SAM_file_to_counts(filename, bam=False, extra=False, use_all_references=True): | |
| 25 """ | |
| 26 Take SAM filename, and create a hash of mapped and unmapped reads; | |
| 27 keys are reference sequences, values are the counts of occurences. | |
| 28 | |
| 29 Also, a hash of qualities (either 0 or >0) of mapped reads | |
| 30 is output, which is handy for diagnostics. | |
| 31 """ | |
| 32 counts = dict() | |
| 33 unique = dict() | |
| 34 nonunique = dict() | |
| 35 mode = 'r' | |
| 36 if bam: | |
| 37 mode = 'rb' | |
| 38 sf = pysam.Samfile(filename, mode) | |
| 39 | |
| 40 if use_all_references: | |
| 41 # Make dictionary of all entries in header | |
| 42 for sn in sf.header['SQ']: | |
| 43 if extra: | |
| 44 unique[sn['SN']] = 0 | |
| 45 nonunique[sn['SN']] = 0 | |
| 46 counts[sn['SN']] = 0 | |
| 47 | |
| 48 for read in sf: | |
| 49 if not read.is_unmapped: | |
| 50 id_name = sf.getrname(read.rname) if read.rname != -1 else 0 | |
| 51 | |
| 52 if not use_all_references and not counts.get(id_name, False): | |
| 53 ## Only make keys based on aligning reads, make empty hash | |
| 54 if extra: | |
| 55 unique[id_name] = 0 | |
| 56 nonunique[id_name] = 0 | |
| 57 ## initiate entry; even if not mapped, record 0 count | |
| 58 counts[id_name] = counts.get(id_name, 0) | |
| 59 | |
| 60 | |
| 61 counts[id_name] = counts.get(id_name, 0) + 1 | |
| 62 | |
| 63 if extra: | |
| 64 if read.mapq == 0: | |
| 65 nonunique[id_name] = nonunique[id_name] + 1 | |
| 66 else: | |
| 67 unique[id_name] = unique[id_name] + 1 | |
| 68 | |
| 69 if extra: | |
| 70 return {'counts':counts, 'unique':unique, 'nonunique':nonunique} | |
| 71 | |
| 72 return {'counts':counts} | |
| 73 | |
| 74 def collapsed_nested_count_dict(counts_dict, all_ids, order=None): | |
| 75 """ | |
| 76 Takes a nested dictionary `counts_dict` and `all_ids`, which is | |
| 77 built with the `table_dict`. All files (first keys) in | |
| 78 `counts_dict` are made into columns with order specified by | |
| 79 `order`. | |
| 80 | |
| 81 Output is a dictionary with keys that are the id's (genes or | |
| 82 transcripts), with values that are ordered counts. A header will | |
| 83 be created on the first row from the ordered columns (extracted | |
| 84 from filenames). | |
| 85 """ | |
| 86 if order is None: | |
| 87 col_order = counts_dict.keys() | |
| 88 else: | |
| 89 col_order = order | |
| 90 | |
| 91 collapsed_dict = dict() | |
| 92 for i, filename in enumerate(col_order): | |
| 93 for id_name in all_ids: | |
| 94 if not collapsed_dict.get(id_name, False): | |
| 95 collapsed_dict[id_name] = list() | |
| 96 | |
| 97 # get counts and append | |
| 98 c = counts_dict[filename].get(id_name, 0) | |
| 99 collapsed_dict[id_name].append(c) | |
| 100 return {'table':collapsed_dict, 'header':col_order} | |
| 101 | |
| 102 | |
| 103 def counts_to_file(table_dict, outfilename, delimiter=',', labels=''): | |
| 104 """ | |
| 105 A function for its side-effect of writing `table_dict` (which | |
| 106 contains a table and header), to `outfilename` with the specified | |
| 107 `delimiter`. | |
| 108 """ | |
| 109 writer = csv.writer(open(outfilename, 'w'), delimiter=delimiter) | |
| 110 table = table_dict['table'] | |
| 111 if labels: | |
| 112 header = labels.split(',') | |
| 113 else: | |
| 114 header = table_dict['header'] | |
| 115 | |
| 116 header_row = True | |
| 117 for id_name, fields in table.items(): | |
| 118 if header_row: | |
| 119 row = ['id'] + header | |
| 120 writer.writerow(row) | |
| 121 header_row = False | |
| 122 | |
| 123 if id_name == 0: | |
| 124 continue | |
| 125 row = [id_name] | |
| 126 row.extend(fields) | |
| 127 writer.writerow(row) | |
| 128 | |
| 129 if __name__ == '__main__': | |
| 130 parser = OptionParser() | |
| 131 parser.add_option("-d", "--delimiter", dest="delimiter", | |
| 132 help="the delimiter (default: tab)", default='\t') | |
| 133 parser.add_option("-o", "--out-file", dest="out_file", | |
| 134 help="output filename (default: counts.txt)", | |
| 135 default='counts.txt', action="store", type="string") | |
| 136 parser.add_option("-u", "--extra-output", dest="extra_out", | |
| 137 help="output extra information on non-unique and unique mappers (default: False)", | |
| 138 default=False, action="store_true") | |
| 139 parser.add_option("-b", "--bam", dest="bam", | |
| 140 help="all input files are BAM (default: False)", | |
| 141 default=False, action="store_true") | |
| 142 parser.add_option("-r", "--use-all-references", dest="use_all_references", | |
| 143 help="Use all the references from the SAM header (default: True)", | |
| 144 default=True, action="store_false") | |
| 145 parser.add_option("-f", "--extra-out-files", dest="extra_out_files", | |
| 146 help="comma-delimited filenames of unique and non-unique output " | |
| 147 "(default: unique.txt,nonunique.txt)", | |
| 148 default='unique.txt,nonunique.txt', action="store", type="string") | |
| 149 parser.add_option("-v", "--verbose", dest="verbose", | |
| 150 help="enable verbose output") | |
| 151 parser.add_option("-l", "--columns-labels", dest="col_labels", help="comma-delimited label names for samples", action="store", type="string") | |
| 152 | |
| 153 (options, args) = parser.parse_args() | |
| 154 | |
| 155 if len(args) < 1: | |
| 156 parser.error("one or more SAM files as arguments required") | |
| 157 | |
| 158 file_counts = dict() | |
| 159 file_unique_counts = dict() | |
| 160 file_nonunique_counts = dict() | |
| 161 all_ids = list() | |
| 162 files = [path.basename(f) for f in args] | |
| 163 | |
| 164 if options.col_labels and len(files) != len(options.col_labels.split(',')): | |
| 165 parser.error("Number of sample names does not equal number of files") | |
| 166 | |
| 167 if len(set(files)) != len(set(args)): | |
| 168 parser.error("file args must have unique base names (i.e. no foo/bar joo/bar)") | |
| 169 | |
| 170 ## do a pre-run check that all files exist | |
| 171 for full_filename in args: | |
| 172 if not path.exists(full_filename): | |
| 173 parser.error("file '%s' does not exist" % full_filename) | |
| 174 | |
| 175 for full_filename in args: | |
| 176 filename = path.basename(full_filename) | |
| 177 ## read in SAM file, extract counts, and unpack counts | |
| 178 tmp = SAM_file_to_counts(full_filename, bam=options.bam, extra=options.extra_out, | |
| 179 use_all_references=options.use_all_references) | |
| 180 | |
| 181 if options.extra_out: | |
| 182 counts, unique, nonunique = tmp['counts'], tmp['unique'], tmp['nonunique'] | |
| 183 else: | |
| 184 counts = tmp['counts'] | |
| 185 | |
| 186 ## save counts, and unique/non-unique counts | |
| 187 file_counts[filename] = counts | |
| 188 | |
| 189 if options.extra_out: | |
| 190 file_unique_counts[filename] = unique | |
| 191 file_nonunique_counts[filename] = nonunique | |
| 192 | |
| 193 ## add all ids encountered in this in this file | |
| 194 all_ids.extend(file_counts[filename].keys()) | |
| 195 | |
| 196 ## Uniquify all_ids, and then take the nested file_counts | |
| 197 ## dictionary, collapse, and write to file. | |
| 198 all_ids = set(all_ids) | |
| 199 table_dict = collapsed_nested_count_dict(file_counts, all_ids, order=files) | |
| 200 counts_to_file(table_dict, options.out_file, delimiter=options.delimiter, labels=options.col_labels) | |
| 201 | |
| 202 if options.extra_out: | |
| 203 unique_fn, nonunique_fn = options.extra_out_files.split(',') | |
| 204 unique_table_dict = collapsed_nested_count_dict(file_unique_counts, all_ids, order=files) | |
| 205 nonunique_table_dict = collapsed_nested_count_dict(file_nonunique_counts, all_ids, order=files) | |
| 206 | |
| 207 counts_to_file(unique_table_dict, unique_fn, delimiter=options.delimiter) | |
| 208 counts_to_file(nonunique_table_dict, nonunique_fn, delimiter=options.delimiter) | |
| 209 |
