Mercurial > repos > nikhil-joshi > sam2counts_edger
comparison sam2counts_galaxy_edger.py @ 0:ce3a667012c2 draft
Uploaded
author | nikhil-joshi |
---|---|
date | Thu, 22 Jan 2015 03:54:22 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:ce3a667012c2 |
---|---|
1 #!/usr/bin/python | |
2 | |
3 """ | |
4 sam2count_galaxy_edger.py -- Take SAM files and output a table of counts with column | |
5 names that are the filenames, and rowname that are the reference | |
6 names. | |
7 """ | |
8 | |
9 VERSION = 0.90 | |
10 | |
11 import sys | |
12 import csv | |
13 from os import path | |
14 try: | |
15 import pysam | |
16 except ImportError: | |
17 sys.exit("pysam not installed; please install it\n") | |
18 | |
19 import argparse | |
20 | |
21 def SAM_file_to_counts(filename, sname, ftype="sam", extra=False, use_all_references=True): | |
22 """ | |
23 Take SAM filename, and create a hash of mapped and unmapped reads; | |
24 keys are reference sequences, values are the counts of occurences. | |
25 | |
26 Also, a hash of qualities (either 0 or >0) of mapped reads | |
27 is output, which is handy for diagnostics. | |
28 """ | |
29 counts = dict() | |
30 unique = dict() | |
31 nonunique = dict() | |
32 mode = 'r' | |
33 if ftype == "bam": | |
34 mode = 'rb' | |
35 sf = pysam.Samfile(filename, mode) | |
36 | |
37 if use_all_references: | |
38 # Make dictionary of all entries in header | |
39 try: | |
40 for sn in sf.header['SQ']: | |
41 if extra: | |
42 unique[sn['SN']] = 0 | |
43 nonunique[sn['SN']] = 0 | |
44 counts[sn['SN']] = 0 | |
45 except KeyError: | |
46 print "Sample file of sample " + sname + " does not have header." | |
47 | |
48 for read in sf: | |
49 if not read.is_unmapped: | |
50 id_name = sf.getrname(read.rname) if read.rname != -1 else 0 | |
51 | |
52 if not use_all_references and not counts.get(id_name, False): | |
53 ## Only make keys based on aligning reads, make empty hash | |
54 if extra: | |
55 unique[id_name] = 0 | |
56 nonunique[id_name] = 0 | |
57 ## initiate entry; even if not mapped, record 0 count | |
58 counts[id_name] = counts.get(id_name, 0) | |
59 | |
60 | |
61 counts[id_name] = counts.get(id_name, 0) + 1 | |
62 | |
63 if extra: | |
64 if read.mapq == 0: | |
65 nonunique[id_name] = nonunique[id_name] + 1 | |
66 else: | |
67 unique[id_name] = unique[id_name] + 1 | |
68 | |
69 if extra: | |
70 return {'counts':counts, 'unique':unique, 'nonunique':nonunique} | |
71 | |
72 return {'counts':counts} | |
73 | |
74 def collapsed_nested_count_dict(counts_dict, all_ids, order=None): | |
75 """ | |
76 Takes a nested dictionary `counts_dict` and `all_ids`, which is | |
77 built with the `table_dict`. All files (first keys) in | |
78 `counts_dict` are made into columns with order specified by | |
79 `order`. | |
80 | |
81 Output is a dictionary with keys that are the id's (genes or | |
82 transcripts), with values that are ordered counts. A header will | |
83 be created on the first row from the ordered columns (extracted | |
84 from filenames). | |
85 """ | |
86 if order is None: | |
87 col_order = counts_dict.keys() | |
88 else: | |
89 col_order = order | |
90 | |
91 collapsed_dict = dict() | |
92 for i, filename in enumerate(col_order): | |
93 for id_name in all_ids: | |
94 if not collapsed_dict.get(id_name, False): | |
95 collapsed_dict[id_name] = list() | |
96 | |
97 # get counts and append | |
98 c = counts_dict[filename].get(id_name, 0) | |
99 collapsed_dict[id_name].append(c) | |
100 return {'table':collapsed_dict, 'header':col_order} | |
101 | |
102 | |
103 def counts_to_file(table_dict, outfilename, delimiter=','): | |
104 """ | |
105 A function for its side-effect of writing `table_dict` (which | |
106 contains a table and header), to `outfilename` with the specified | |
107 `delimiter`. | |
108 """ | |
109 writer = csv.writer(open(outfilename, 'a'), delimiter=delimiter, lineterminator='\n') | |
110 table = table_dict['table'] | |
111 header = table_dict['header'] | |
112 | |
113 #header_row = True | |
114 for id_name, fields in table.items(): | |
115 #if header_row: | |
116 #row = ['id'] + header | |
117 #writer.writerow(row) | |
118 #header_row = False | |
119 | |
120 if id_name == 0: | |
121 continue | |
122 row = [id_name] | |
123 row.extend(fields) | |
124 writer.writerow(row) | |
125 | |
126 if __name__ == '__main__': | |
127 parser = argparse.ArgumentParser(description='parser for sam2counts') | |
128 parser.add_argument("-d", "--delimiter", help="the delimiter (default: tab)", default='\t') | |
129 parser.add_argument("-o", "--out-file", help="output filename (default: counts.txt)", default='counts.txt') | |
130 parser.add_argument("-u", "--extra-output", help="output extra information on non-unique and unique mappers (default: False)") | |
131 parser.add_argument("-r", "--use-all-references", dest="use_all_references", | |
132 help="Use all the references from the SAM header (default: True)", | |
133 default=True, action="store_false") | |
134 parser.add_argument("-f", "--extra-out-files", dest="extra_out_files", | |
135 help="comma-delimited filenames of unique and non-unique output " | |
136 "(default: unique.txt,nonunique.txt)", | |
137 default='unique.txt,nonunique.txt') | |
138 parser.add_argument("-v", "--verbose", dest="verbose", | |
139 help="enable verbose output") | |
140 parser.add_argument("--bam-file", help="bam file", nargs="+", action="append", required=True) | |
141 parser.add_argument("--group", help="group", nargs="+", action="append", required=True) | |
142 parser.add_argument("--treatment", help="treatment", nargs="+", action="append", required=True) | |
143 parser.add_argument("--sample-name", help="sample name", nargs="+", action="append", required=True) | |
144 parser.add_argument("--file-type", help="file type", nargs="+", action="append", required=True, choices=['sam','bam']) | |
145 args = parser.parse_args() | |
146 | |
147 args.bam_file = [item for sublist in args.bam_file for item in sublist] | |
148 args.group = [item for sublist in args.group for item in sublist] | |
149 args.treatment = [item for sublist in args.treatment for item in sublist] | |
150 args.sample_name = [item for sublist in args.sample_name for item in sublist] | |
151 args.file_type = [item for sublist in args.file_type for item in sublist] | |
152 #print(args.sample_name) | |
153 | |
154 if (len(args.sample_name) != len(set(args.sample_name))): | |
155 parser.error("Sample names must be unique.") | |
156 | |
157 if not(len(args.bam_file) == len(args.group) and len(args.group) == len(args.treatment) and len(args.treatment) == len(args.sample_name) and len(args.sample_name) == len(args.file_type)): | |
158 parser.error("Number of total BAM files, groups, treatments, sample names, and types must be the same.") | |
159 | |
160 file_counts = dict() | |
161 file_unique_counts = dict() | |
162 file_nonunique_counts = dict() | |
163 all_ids = list() | |
164 | |
165 ## do a pre-run check that all files exist | |
166 for full_filename in args.bam_file: | |
167 if not path.exists(full_filename): | |
168 parser.error("file '%s' does not exist" % full_filename) | |
169 | |
170 outf = open(args.out_file, "w") | |
171 outf.write("#") | |
172 for (g,t) in zip(args.group,args.treatment): | |
173 outf.write("\t" + g + ":" + t) | |
174 outf.write("\n#Feature") | |
175 for s in args.sample_name: | |
176 outf.write("\t" + s) | |
177 outf.write("\n") | |
178 outf.close() | |
179 | |
180 for (full_filename, sn, ft) in zip(args.bam_file, args.sample_name, args.file_type): | |
181 ## read in SAM file, extract counts, and unpack counts | |
182 tmp = SAM_file_to_counts(full_filename, sn, ftype=ft, extra=args.extra_output, | |
183 use_all_references=args.use_all_references) | |
184 | |
185 if args.extra_output: | |
186 counts, unique, nonunique = tmp['counts'], tmp['unique'], tmp['nonunique'] | |
187 else: | |
188 counts = tmp['counts'] | |
189 | |
190 ## save counts, and unique/non-unique counts | |
191 file_counts[sn] = counts | |
192 | |
193 if args.extra_output: | |
194 file_unique_counts[sn] = unique | |
195 file_nonunique_counts[sn] = nonunique | |
196 | |
197 ## add all ids encountered in this in this file | |
198 all_ids.extend(file_counts[sn].keys()) | |
199 | |
200 ## Uniquify all_ids, and then take the nested file_counts | |
201 ## dictionary, collapse, and write to file. | |
202 all_ids = set(all_ids) | |
203 table_dict = collapsed_nested_count_dict(file_counts, all_ids, order=args.sample_name) | |
204 counts_to_file(table_dict, args.out_file, delimiter=args.delimiter) | |
205 | |
206 if args.extra_output: | |
207 unique_fn, nonunique_fn = args.extra_out_files.split(',') | |
208 unique_table_dict = collapsed_nested_count_dict(file_unique_counts, all_ids, order=files) | |
209 nonunique_table_dict = collapsed_nested_count_dict(file_nonunique_counts, all_ids, order=files) | |
210 | |
211 counts_to_file(unique_table_dict, unique_fn, delimiter=args.delimiter) | |
212 counts_to_file(nonunique_table_dict, nonunique_fn, delimiter=args.delimiter) | |
213 |