view read_NVC.xml @ 61:5968573462fa draft

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/rseqc commit 8a91236cee4d408ae2b53a3e9b6daebc332d631a
author iuc
date Sat, 10 Dec 2022 11:23:05 +0000
parents 1421603cc95b
children 473382134e56
line wrap: on
line source

<tool id="rseqc_read_NVC" name="Read NVC" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@GALAXY_VERSION@">
    <description>to check the nucleotide composition bias</description>
    <macros>
        <import>rseqc_macros.xml</import>
    </macros>
    <expand macro="bio_tools"/>

    <expand macro="requirements" />

    <expand macro="stdio" />

    <version_command><![CDATA[read_NVC.py --version]]></version_command>

    <command><![CDATA[
        @BAM_SAM_INPUTS@
        read_NVC.py
            --input-file 'input.${extension}'
            --out-prefix output
            ${nx}
            --mapq ${mapq}
    ]]>
    </command>

    <inputs>
        <expand macro="bam_sam_param" />
        <param name="nx" type="boolean" value="false" truevalue="--nx" falsevalue="" label="Include N,X in NVC plot" help="(--nx)"/>
        <expand macro="mapq_param" />
        <expand macro="rscript_output_param" />
    </inputs>

    <outputs>
        <expand macro="pdf_output_data" filename="output.NVC_plot.pdf" />
        <expand macro="xls_output_data" filename="output.NVC.xls" />
        <expand macro="rscript_output_data" filename="output.NVC_plot.r" />
    </outputs>

    <tests>
        <test>
            <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bam" />
            <param name="rscript_output" value="true" />
            <output name="outputxls" file="output.NVC.xls" />
            <output name="outputr" file="output.NVC_plot_r" />
            <output name="outputpdf" file="output.NVC_plot.pdf" compare="sim_size" />
        </test>
    </tests>

    <help><![CDATA[
read_NVC.py
+++++++++++

This module is used to check the nucleotide composition bias. Due to random priming, certain
patterns are over represented at the beginning (5'end) of reads. This bias could be easily
examined by NVC (Nucleotide versus cycle) plot. NVC plot is generated by overlaying all
reads together, then calculating nucleotide composition for each position of read
(or each sequencing cycle). In ideal condition (genome is random and RNA-seq reads is
randomly sampled from genome), we expect A%=C%=G%=T%=25% at each position of reads.

NOTE: this program expect a fixed read length

Inputs
++++++++++++++

Input BAM/SAM file
    Alignment file in BAM/SAM format.

Include N,X in NVC plot
    Plots N and X alongside A, T, C, and G in plot.

Output
++++++++++++++

This module is used to check the nucleotide composition bias. Due to random priming, certain patterns are over represented at the beginning (5'end) of reads. This bias could be easily examined by NVC (Nucleotide versus cycle) plot. NVC plot is generated by overlaying all reads together, then calculating nucleotide composition for each position of read (or each sequencing cycle). In ideal condition (genome is random and RNA-seq reads is randomly sampled from genome), we expect A%=C%=G%=T%=25% at each position of reads.


1. output.NVC.xls: plain text file, each row is position of read (or sequencing cycle), each column is nucleotide (A,C,G,T,N,X)
2. output.NVC_plot.r: R script to generate NVC plot.
3. output.NVC_plot.pdf: NVC plot.


.. image:: $PATH_TO_IMAGES/NVC_plot.png
   :height: 600 px
   :width: 600 px
   :scale: 80 %

@ABOUT@

]]>
    </help>

    <expand macro="citations" />

</tool>