Mercurial > repos > nilesh > rseqc
view geneBody_coverage2.xml @ 63:27e16a30667a draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/rseqc commit d7544582d5599c67a284faf9232cd2ccc4daa1de
author | iuc |
---|---|
date | Tue, 09 Apr 2024 11:24:55 +0000 |
parents | 5968573462fa |
children |
line wrap: on
line source
<tool id="rseqc_geneBody_coverage2" name="Gene Body Coverage (Bigwig)" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@GALAXY_VERSION@"> <description>read coverage over gene body</description> <macros> <import>rseqc_macros.xml</import> </macros> <expand macro="bio_tools"/> <expand macro="requirements" /> <expand macro="stdio" /> <version_command><![CDATA[geneBody_coverage2.py --version]]></version_command> <command><![CDATA[ geneBody_coverage2.py -i '${input}' -r '${refgene}' -o output ]]> </command> <inputs> <param name="input" type="data" label="Input bigwig file" format="bigwig" /> <expand macro="refgene_param" /> <expand macro="rscript_output_param" /> </inputs> <outputs> <expand macro="pdf_output_data" filename="output.geneBodyCoverage.pdf" /> <data name="outputtxt" format="txt" from_work_dir="output.geneBodyCoverage.txt" label="${tool.name} on ${on_string} (text)" /> <expand macro="rscript_output_data" filename="output.geneBodyCoverage_plot.r" /> </outputs> <tests> <test expect_num_outputs="3"> <param name="input" value="pairend_strandspecific_51mer_hg19_chr1_1-100000.bigwig" /> <param name="refgene" value="hg19_RefSeq_chr1_1-100000.bed" ftype="bed12"/> <param name="rscript_output" value="true" /> <output name="outputpdf" file="output.geneBodyCoverage2.curves.pdf" compare="sim_size" /> <output name="outputr" file="output.geneBodyCoverage2_r" /> <output name="outputtxt" file="output.geneBodyCoverage2.txt" /> </test> </tests> <help><![CDATA[ geneBody_coverage2.py +++++++++++++++++++++ Similar to geneBody_coverage.py. This module takes bigwig instead of BAM as input, and thus requires much less memory. The BigWig file could be arbitrarily large. Inputs ++++++++++++++ Input BAM/SAM file Alignment file in BAM/SAM format. Reference gene model Gene Model in BED format. Outputs ++++++++++++++ Read coverage over gene body. This module is used to check if reads coverage is uniform and if there is any 5’/3’ bias. This module scales all transcripts to 100 nt and calculates the number of reads covering each nucleotide position. Finally, it generates a plot illustrating the coverage profile along the gene body. NOTE: this module requires lots of memory for large BAM files, because it load the entire BAM file into memory. We add another script "geneBody_coverage2.py" into v2.3.1 which takes bigwig (instead of BAM) as input. It only use 200M RAM, but users need to convert BAM into WIG, and then WIG into BigWig. Example output: .. image:: $PATH_TO_IMAGES/geneBody_coverage.png :height: 600 px :width: 600 px :scale: 80 % @ABOUT@ ]]> </help> <expand macro="citations" /> </tool>